2016-06-09 23:36:28 +01:00
|
|
|
"""Calculate the perimeter of a glyph."""
|
2017-02-19 16:04:03 -06:00
|
|
|
# -*- coding: utf-8-*-
|
2016-06-09 23:36:28 +01:00
|
|
|
|
|
|
|
from __future__ import print_function, division, absolute_import
|
|
|
|
from fontTools.misc.py23 import *
|
|
|
|
from fontTools.pens.basePen import BasePen
|
2016-06-13 18:47:43 -04:00
|
|
|
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT
|
2016-06-09 23:36:28 +01:00
|
|
|
import math
|
|
|
|
|
|
|
|
|
2016-06-13 20:08:50 -04:00
|
|
|
def _distance(p0, p1):
|
2016-06-09 23:36:28 +01:00
|
|
|
return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
|
2016-10-29 14:30:01 +02:00
|
|
|
def _dot(v1, v2):
|
|
|
|
return (v1 * v2.conjugate()).real
|
2016-06-13 20:08:50 -04:00
|
|
|
def _intSecAtan(x):
|
|
|
|
# In : sympy.integrate(sp.sec(sp.atan(x)))
|
|
|
|
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
|
|
|
|
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2
|
2016-06-09 23:36:28 +01:00
|
|
|
|
2016-10-29 16:48:21 +02:00
|
|
|
def _split_cubic_into_two(p0, p1, p2, p3):
|
|
|
|
mid = (p0 + 3 * (p1 + p2) + p3) * .125
|
|
|
|
deriv3 = (p3 + p2 - p1 - p0) * .125
|
|
|
|
return ((p0, (p0 + p1) * .5, mid - deriv3, mid),
|
|
|
|
(mid, mid + deriv3, (p2 + p3) * .5, p3))
|
|
|
|
|
2016-06-09 23:36:28 +01:00
|
|
|
class PerimeterPen(BasePen):
|
|
|
|
|
2016-06-12 15:46:04 -07:00
|
|
|
def __init__(self, glyphset=None, tolerance=0.005):
|
2016-06-09 23:36:28 +01:00
|
|
|
BasePen.__init__(self, glyphset)
|
|
|
|
self.value = 0
|
2016-06-13 18:47:43 -04:00
|
|
|
self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math
|
2016-06-09 23:36:28 +01:00
|
|
|
|
2017-02-19 16:04:03 -06:00
|
|
|
# Choose which algorithm to use for cubic. Recursive algorithm is
|
|
|
|
# accurate to arbitrary tolerances whereas the Lobatto algorithm has
|
|
|
|
# fixed error characteristics, but is faster.
|
|
|
|
#
|
|
|
|
# The 0.0015 cutoff has been empirically determined by measuring error
|
|
|
|
# of the Lobatto approach on a realworld font.
|
|
|
|
if tolerance < 0.0015:
|
|
|
|
self._addCubic = self._addCubicRecursive
|
|
|
|
else:
|
|
|
|
self._addCubic = self._addCubicLobatto
|
|
|
|
|
2016-06-09 23:36:28 +01:00
|
|
|
def _moveTo(self, p0):
|
2016-06-12 11:49:00 +01:00
|
|
|
self.__startPoint = p0
|
2016-06-09 23:36:28 +01:00
|
|
|
|
|
|
|
def _lineTo(self, p1):
|
|
|
|
p0 = self._getCurrentPoint()
|
2016-06-13 20:08:50 -04:00
|
|
|
self.value += _distance(p0, p1)
|
|
|
|
|
|
|
|
def _qCurveToOne(self, p1, p2):
|
|
|
|
# Analytical solution to the length of a quadratic bezier.
|
|
|
|
# I'll explain how I arrived at this later.
|
|
|
|
p0 = self._getCurrentPoint()
|
2016-10-29 14:30:01 +02:00
|
|
|
_p1 = complex(*p1)
|
|
|
|
d0 = _p1 - complex(*p0)
|
|
|
|
d1 = complex(*p2) - _p1
|
|
|
|
d = d1 - d0
|
|
|
|
n = d * 1j
|
|
|
|
scale = abs(n)
|
2016-06-13 20:08:50 -04:00
|
|
|
if scale == 0.:
|
|
|
|
self._lineTo(p2)
|
|
|
|
return
|
|
|
|
origDist = _dot(n,d0)
|
|
|
|
if origDist == 0.:
|
2016-11-08 16:39:38 -08:00
|
|
|
if _dot(d0,d1) >= 0:
|
2016-06-13 20:08:50 -04:00
|
|
|
self._lineTo(p2)
|
|
|
|
return
|
|
|
|
assert 0 # TODO handle cusps
|
|
|
|
x0 = _dot(d,d0) / origDist
|
|
|
|
x1 = _dot(d,d1) / origDist
|
|
|
|
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
|
|
|
|
self.value += Len
|
2016-06-09 23:36:28 +01:00
|
|
|
|
2017-02-19 16:04:03 -06:00
|
|
|
def _addCubicRecursive(self, p0, p1, p2, p3):
|
2016-10-29 16:48:21 +02:00
|
|
|
arch = abs(p0-p3)
|
|
|
|
box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3)
|
2016-06-09 23:36:28 +01:00
|
|
|
if arch * self._mult >= box:
|
|
|
|
self.value += (arch + box) * .5
|
|
|
|
else:
|
2016-10-29 16:48:21 +02:00
|
|
|
one,two = _split_cubic_into_two(p0,p1,p2,p3)
|
2017-02-19 16:04:03 -06:00
|
|
|
self._addCubicRecursive(*one)
|
|
|
|
self._addCubicRecursive(*two)
|
|
|
|
|
|
|
|
def _addCubicLobatto(self, c0, c1, c2, c3, _q=(3/28)**.5):
|
|
|
|
# Approximate length of cubic Bezier curve using Lobatto quadrature
|
|
|
|
# with n=5 points: endpoints, midpoint, and at t=.5±sqrt(21)/14
|
|
|
|
#
|
|
|
|
# This, essentially, approximates the length-of-derivative function
|
|
|
|
# to be integrated with the best-matching seventh-degree polynomial
|
|
|
|
# approximation of it.
|
|
|
|
#
|
|
|
|
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
|
|
|
|
|
|
|
|
v0 = abs(c1-c0)*3
|
|
|
|
v4 = abs(c3-c2)*3
|
|
|
|
v2 = abs(c3-c0+c2-c1)*.75
|
|
|
|
|
|
|
|
# v1=(BezierCurveC[3].diff(t).subs({t:.5-_q}))
|
|
|
|
# v3=(BezierCurveC[3].diff(t).subs({t:.5+_q}))
|
|
|
|
# sp.cse([v1,v3], symbols=(sp.Symbol('r%d'%i) for i in count()))
|
|
|
|
r0 = _q + 0.5
|
|
|
|
r1 = 3*r0**2
|
|
|
|
r2 = -_q + 0.5
|
|
|
|
r3 = 3*r2**2
|
|
|
|
r4 = 6*c2*r0*r2
|
|
|
|
r5 = 3*c1
|
|
|
|
r6 = 2*_q
|
|
|
|
v1 = abs(-c0*r1 + c1*r1 - c2*r3 + c3*r3 + r2*r5*(-r6 - 1.0) + r4)
|
|
|
|
v3 = abs(-c0*r3 + c1*r3 - c2*r1 + c3*r1 + r0*r5*(r6 - 1.0) + r4)
|
|
|
|
|
|
|
|
self.value += (9*(v0+v4) + 64*v2 + 49*(v1+v3))/180
|
2016-06-09 23:36:28 +01:00
|
|
|
|
|
|
|
def _curveToOne(self, p1, p2, p3):
|
|
|
|
p0 = self._getCurrentPoint()
|
2016-10-29 16:48:21 +02:00
|
|
|
self._addCubic(complex(*p0), complex(*p1), complex(*p2), complex(*p3))
|
2016-06-12 11:49:00 +01:00
|
|
|
|
|
|
|
def _closePath(self):
|
|
|
|
p0 = self._getCurrentPoint()
|
|
|
|
if p0 != self.__startPoint:
|
2016-06-13 20:08:50 -04:00
|
|
|
self.value += _distance(p0, self.__startPoint)
|