141 lines
4.4 KiB
Python
Raw Normal View History

from fontTools.varLib.models import supportScalar, normalizeValue
from fontTools.misc.fixedTools import MAX_F2DOT14
2022-08-08 07:23:12 -06:00
from functools import cache
def _revnegate(v):
return (-v[2], -v[1], -v[0])
def _solve(tent, axisLimit):
axisMin, axisDef, axisMax = axisLimit
lower, peak, upper = tent
# Mirror the problem such that axisDef is always <= peak
if axisDef > peak:
return [(scalar, _revnegate(t) if t is not None else None)
for scalar,t
in _solve(_revnegate(tent), _revnegate(axisLimit))]
# axisDef <= peak
# case 1: the whole deltaset falls outside the new limit; we can drop it
if axisMax <= lower and axisMax < peak:
return [] # No overlap
# case 2: only the peak and outermost bound fall outside the new limit;
# we keep the deltaset, update peak and outermost bound and and scale deltas
# by the scalar value for the restricted axis at the new limit.
if axisMax < peak:
mult = supportScalar({'tag': axisMax}, {'tag': tent})
tent = (lower, axisMax, axisMax)
return [(scalar*mult, t) for scalar,t in _solve(tent, axisLimit)]
# lower <= axisDef <= peak <= axisMax
gain = supportScalar({'tag': axisDef}, {'tag': tent})
out = [(gain, None)]
# First, the positive side
# case 3a: gain is more than outGain.
outGain = supportScalar({'tag': axisMax}, {'tag': tent})
if gain > outGain:
crossing = peak + ((1 - gain) * (upper - peak) / (1 - outGain))
2022-08-08 09:35:10 -06:00
loc = (peak, peak, crossing)
scalar = 1
2022-08-08 09:35:10 -06:00
out.append((scalar - gain, loc))
2022-08-08 11:32:07 -06:00
# case 3a1, similar to case 1neg
2022-08-08 09:35:10 -06:00
if upper >= axisMax:
loc = (crossing, axisMax, axisMax)
scalar = supportScalar({'tag': axisMax}, {'tag': tent})
out.append((scalar - gain, loc))
2022-08-08 11:32:07 -06:00
# case 3a2, similar to case 2neg
2022-08-08 09:35:10 -06:00
else:
loc1 = (crossing, upper, axisMax)
scalar1 = 0
loc2 = (upper, axisMax, axisMax)
scalar2 = supportScalar({'tag': axisMax}, {'tag': tent})
2022-08-08 09:35:10 -06:00
out.append((scalar1 - gain, loc1))
out.append((scalar2 - gain, loc2))
# case 3: outermost limit still fits within F2Dot14 bounds;
# we keep deltas as is and only scale the axes bounds. Deltas beyond -1.0
# or +1.0 will never be applied as implementations must clamp to that range.
elif axisDef + (axisMax - axisDef) * 2 >= upper:
if axisDef + (axisMax - axisDef) * MAX_F2DOT14 < upper:
# we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience
upper = axisDef + (axisMax - axisDef) * MAX_F2DOT14
loc = (max(axisDef, lower), peak, upper)
2022-08-08 08:05:37 -06:00
if upper > axisDef:
out.append((1 - gain, loc))
# case 4: new limit doesn't fit; we need to chop the deltaset into two 'tents',
# because the shape of a triangle with part of one side cut off cannot be
# represented as a triangle itself. It can be represented as sum of two triangles.
# NOTE: This increases the file size!
else:
loc1 = (max(axisDef, lower), peak, axisMax)
scalar1 = 1
loc2 = (peak, axisMax, axisMax)
scalar2 = supportScalar({'tag': axisMax}, {'tag': tent})
out.append((scalar1 - gain, loc1))
2022-08-08 06:57:40 -06:00
if (peak < axisMax):
out.append((scalar2 - gain, loc2))
# Now, the negative side
# case 1neg: lower extends beyond axisMin: we chop.
if lower <= axisMin:
loc = (axisMin, axisMin, axisDef)
scalar = supportScalar({'tag': axisMin}, {'tag': tent})
out.append((scalar - gain, loc))
# case 2neg: lower is betwen axisMin and axisDef: we add two deltasets to
# keep it "up" all the way to end.
else:
loc1 = (axisMin, lower, axisDef)
scalar1 = 0
loc2 = (axisMin, axisMin, lower)
scalar2 = 0
out.append((scalar1 - gain, loc1))
out.append((scalar2 - gain, loc2))
return out
2022-08-08 07:23:12 -06:00
@cache
2022-08-06 16:17:43 -06:00
def rebaseTent(tent, axisLimit):
axisMin, axisDef, axisMax = axisLimit
assert -1 <= axisMin <= axisDef <= axisMax <= +1
2022-08-06 16:17:43 -06:00
lower, peak, upper = tent
assert -2 <= lower <= peak <= upper <= +2
2022-08-06 16:22:39 -06:00
assert peak != 0
sols = _solve(tent, axisLimit)
n = lambda v: normalizeValue(v, axisLimit, extrapolate=True)
sols = [(scalar, (n(v[0]), n(v[1]), n(v[2])) if v is not None else None) for scalar,v in sols if scalar != 0]
return sols