fonttools/Lib/fontTools/pens/perimeterPen.py

76 lines
2.0 KiB
Python
Raw Normal View History

"""Calculate the perimeter of a glyph."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.pens.basePen import BasePen
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT
import math
def _distance(p0, p1):
return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
def _diff(a, b):
return (b[0]-a[0], b[1]-a[1])
def _dot(a, b):
return a[0]*b[0] + a[1]*b[1]
def _intSecAtan(x):
# In : sympy.integrate(sp.sec(sp.atan(x)))
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2
class PerimeterPen(BasePen):
def __init__(self, glyphset=None, tolerance=0.005):
BasePen.__init__(self, glyphset)
self.value = 0
self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math
def _moveTo(self, p0):
self.__startPoint = p0
def _lineTo(self, p1):
p0 = self._getCurrentPoint()
self.value += _distance(p0, p1)
def _qCurveToOne(self, p1, p2):
# Analytical solution to the length of a quadratic bezier.
# I'll explain how I arrived at this later.
p0 = self._getCurrentPoint()
Len = 0
d0 = _diff(p0, p1)
d1 = _diff(p1, p2)
d = _diff(d0, d1)
n = (d[1],-d[0])
scale = math.hypot(n[0],n[1])
if scale == 0.:
self._lineTo(p2)
return
origDist = _dot(n,d0)
if origDist == 0.:
if _dot(d0,d1) > 0:
self._lineTo(p2)
return
assert 0 # TODO handle cusps
x0 = _dot(d,d0) / origDist
x1 = _dot(d,d1) / origDist
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
self.value += Len
def _addCubic(self, p0, p1, p2, p3):
arch = _distance(p0, p3)
box = _distance(p0, p1) + _distance(p1, p2) + _distance(p2, p3)
if arch * self._mult >= box:
self.value += (arch + box) * .5
else:
for c in splitCubicAtT(p0,p1,p2,p3,.2,.4,.6,.8):
self._addCubic(*c)
def _curveToOne(self, p1, p2, p3):
p0 = self._getCurrentPoint()
self._addCubic(p0, p1, p2, p3)
def _closePath(self):
p0 = self._getCurrentPoint()
if p0 != self.__startPoint:
self.value += _distance(p0, self.__startPoint)