Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

336 lines
9.7 KiB
Python
Raw Normal View History

# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2023 Google Inc. All Rights Reserved.
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
except ImportError:
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
from fontTools.misc.bezierTools import splitCubicAtTC
2023-02-20 08:17:24 -07:00
from typing import NamedTuple
__all__ = ["quadratic_to_curves", "quadratics_to_curves"]
if cython.compiled:
# Yep, I'm compiled.
COMPILED = True
else:
# Just a lowly interpreted script.
COMPILED = False
# Copied from cu2qu
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.locals(_1_3=cython.double, _2_3=cython.double)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p1_2_3=cython.complex,
)
def elevate_quadratic(p0, p1, p2, _1_3=1 / 3, _2_3=2 / 3):
"""Given a quadratic bezier curve, return its degree-elevated cubic."""
2023-02-14 13:08:47 -07:00
# https://pomax.github.io/bezierinfo/#reordering
p1_2_3 = p1 * _2_3
return (
p0,
(p0 * _1_3 + p1_2_3),
(p2 * _1_3 + p1_2_3),
p2,
)
@cython.locals(
n=cython.int,
2023-02-16 17:36:01 -07:00
k=cython.int,
prod_ratio=cython.double,
sum_ratio=cython.double,
ratio=cython.double,
2023-02-16 17:36:01 -07:00
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
def merge_curves(curves):
2023-02-14 13:08:47 -07:00
"""Give a cubic-Bezier spline, reconstruct one cubic-Bezier
that has the same endpoints and tangents and approxmates
the spline."""
# Reconstruct the t values of the cut segments
n = len(curves)
prod_ratio = 1.0
sum_ratio = 1.0
ts = [1]
for k in range(1, n):
ck = curves[k]
c_before = curves[k - 1]
# |t_(k+1) - t_k| / |t_k - t_(k - 1)| = ratio
assert ck[0] == c_before[3]
ratio = abs(ck[1] - ck[0]) / abs(c_before[3] - c_before[2])
prod_ratio *= ratio
sum_ratio += prod_ratio
ts.append(sum_ratio)
# (t(n) - t(n - 1)) / (t_(1) - t(0)) = prod_ratio
ts = [t / sum_ratio for t in ts[:-1]]
p0 = curves[0][0]
p1 = curves[0][1]
p2 = curves[n - 1][2]
p3 = curves[n - 1][3]
2023-02-14 13:08:47 -07:00
# Build the curve by scaling the control-points.
p1 = p0 + (p1 - p0) / (ts[0] if ts else 1)
p2 = p3 + (p2 - p3) / ((1 - ts[-1]) if ts else 1)
curve = (p0, p1, p2, p3)
return curve, ts
def add_implicit_on_curves(p):
q = list(p)
count = 0
num_offcurves = len(p) - 2
for i in range(1, num_offcurves):
off1 = p[i]
off2 = p[i + 1]
on = off1 + (off2 - off1) * 0.5
q.insert(i + 1 + count, on)
count += 1
return q
2023-02-17 15:05:29 -07:00
def quadratics_to_curves(pp, tolerance=0.5, all_cubic=False):
is_complex = type(pp[0][0]) is complex
if not is_complex:
pp = [[complex(x, y) for (x, y) in p] for p in pp]
q = [pp[0][0]]
cost = 0
costs = [0]
for p in pp:
assert q[-1] == p[0]
for i in range(len(p) - 2):
cost += 1
costs.append(cost)
costs.append(cost + 1)
qq = add_implicit_on_curves(p)[1:]
q.extend(qq)
cost += 1
costs.append(cost)
costs.append(cost + 1)
curves = spline_to_curves(q, costs, tolerance, all_cubic)
if not is_complex:
curves = [tuple((c.real, c.imag) for c in curve) for curve in curves]
return curves
2023-02-17 15:05:29 -07:00
def quadratic_to_curves(q, tolerance=0.5, all_cubic=False):
is_complex = type(q[0]) is complex
if not is_complex:
q = [complex(x, y) for (x, y) in q]
costs = [0]
for i in range(len(q) - 2):
costs.append(i + 1)
costs.append(i + 2)
costs.append(len(q) - 1)
costs.append(len(q))
q = add_implicit_on_curves(q)
curves = spline_to_curves(q, costs, tolerance, all_cubic)
if not is_complex:
curves = [tuple((c.real, c.imag) for c in curve) for curve in curves]
return curves
2023-02-20 08:17:24 -07:00
class Solution(NamedTuple):
num_points: int
error: float
start_index: int
is_cubic: bool
def spline_to_curves(q, costs, tolerance=0.5, all_cubic=False):
assert len(q) >= 3, "quadratic spline requires at least 3 points"
# Elevate quadratic segments to cubic
elevated_quadratics = [
elevate_quadratic(*q[i : i + 3]) for i in range(0, len(q) - 2, 2)
]
2023-02-16 20:25:59 -07:00
# Dynamic-Programming to find the solution with fewest number of
2023-02-14 13:08:47 -07:00
# cubic curves, and within those the one with smallest error.
2023-02-20 08:17:24 -07:00
sols = [Solution(0, 0, 0, False)]
for i in range(1, len(elevated_quadratics) + 1):
2023-02-20 08:17:24 -07:00
best_sol = Solution(len(q) + 2, 0, 1, False)
2023-02-14 12:50:50 -07:00
for j in range(0, i):
2023-02-20 08:17:24 -07:00
j_sol_count, j_sol_error = sols[j].num_points, sols[j].error
if not all_cubic:
# Solution with quadratics between j:i
i_sol_count = j_sol_count + costs[2 * i] - costs[2 * j]
i_sol_error = j_sol_error
2023-02-20 08:17:24 -07:00
i_sol = Solution(i_sol_count, i_sol_error, i - j, False)
if i_sol < best_sol:
best_sol = i_sol
# Fit elevated_quadratics[j:i] into one cubic
try:
curve, ts = merge_curves(elevated_quadratics[j:i])
except ZeroDivisionError:
continue
2023-02-16 20:25:59 -07:00
# Now reconstruct the segments from the fitted curve
reconstructed_iter = splitCubicAtTC(*curve, *ts)
reconstructed = []
2023-02-16 20:25:59 -07:00
# Knot errors
error = 0
for k, reconst in enumerate(reconstructed_iter):
orig = elevated_quadratics[j + k]
err = abs(reconst[3] - orig[3])
error = max(error, err)
if error > tolerance:
break
reconstructed.append(reconst)
if error > tolerance:
# Not feasible
continue
# Interior errors
for k, reconst in enumerate(reconstructed):
orig = elevated_quadratics[j + k]
p0, p1, p2, p3 = tuple(v - u for v, u in zip(reconst, orig))
if not cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
error = tolerance + 1
break
if error > tolerance:
2023-02-14 13:08:47 -07:00
# Not feasible
continue
2023-02-14 13:08:47 -07:00
# Save best solution
i_sol_count = j_sol_count + 3
i_sol_error = max(j_sol_error, error)
2023-02-20 08:17:24 -07:00
i_sol = Solution(i_sol_count, i_sol_error, i - j, True)
if i_sol < best_sol:
best_sol = i_sol
if i_sol_count == 4:
2023-02-14 13:08:47 -07:00
# Can't get any better than this
2023-02-14 12:50:50 -07:00
break
sols.append(best_sol)
# Reconstruct solution
splits = []
cubic = []
i = len(sols) - 1
while i:
2023-02-20 08:17:24 -07:00
count, is_cubic = sols[i].start_index, sols[i].is_cubic
splits.append(i)
cubic.append(is_cubic)
i -= count
curves = []
j = 0
for i, is_cubic in reversed(list(zip(splits, cubic))):
if is_cubic:
curves.append(merge_curves(elevated_quadratics[j:i])[0])
else:
for k in range(j, i):
curves.append(q[k * 2 : k * 2 + 3])
j = i
return curves
def main():
from fontTools.cu2qu.benchmark import generate_curve
from fontTools.cu2qu import curve_to_quadratic
tolerance = 0.05
reconstruct_tolerance = tolerance * 1
curve = generate_curve()
quadratics = curve_to_quadratic(curve, tolerance)
print(
"cu2qu tolerance %g. qu2cu tolerance %g." % (tolerance, reconstruct_tolerance)
)
print("One random cubic turned into %d quadratics." % len(quadratics))
2023-02-14 12:50:50 -07:00
curves = quadratic_to_curves(quadratics, reconstruct_tolerance)
print("Those quadratics turned back into %d cubics. " % len(curves))
print("Original curve:", curve)
print("Reconstructed curve(s):", curves)
2023-02-17 16:50:57 -07:00
if __name__ == "__main__":
main()