new module bezierTools.py

git-svn-id: svn://svn.code.sf.net/p/fonttools/code/trunk@396 4cde692c-a291-49d1-8350-778aa11640f8
This commit is contained in:
jvr 2003-06-29 18:25:07 +00:00
parent 182a7ba7be
commit 05b4b4a271

View File

@ -0,0 +1,215 @@
"""fontTools.misc.bezierTools.py -- tools for working with bezier path segments."""
__all__ = ["calcQuadraticBounds", "calcCubicBounds", "splitLine", "splitQuadratic",
"splitCubic", "solveQuadratic", "solveCubic"]
from fontTools.misc.arrayTools import calcBounds
import Numeric
def calcQuadraticBounds(pt1, pt2, pt3):
"""Return the bounding rectangle for a qudratic bezier segment.
pt1 and pt3 are the "anchor" points, pt2 is the "handle"."""
# convert points to Numeric arrays
pt1, pt2, pt3 = Numeric.array((pt1, pt2, pt3))
# calc quadratic parameters
c = pt1
b = (pt2 - c) * 2.0
a = pt3 - c - b
# calc first derivative
ax, ay = a * 2
bx, by = b
roots = []
if ax != 0:
roots.append(-bx/ax)
if ay != 0:
roots.append(-by/ay)
points = [a*t*t + b*t + c for t in roots if 0 <= t < 1] + [pt1, pt3]
return calcBounds(points)
def calcCubicBounds(pt1, pt2, pt3, pt4):
"""Return the bounding rectangle for a cubic bezier segment.
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles"."""
# convert points to Numeric arrays
pt1, pt2, pt3, pt4 = Numeric.array((pt1, pt2, pt3, pt4))
# calc cubic parameters
d = pt1
c = (pt2 - d) * 3.0
b = (pt3 - pt2) * 3.0 - c
a = pt4 - d - c - b
# calc first derivative
ax, ay = a * 3.0
bx, by = b * 2.0
cx, cy = c
xRoots = [t for t in solveQuadratic(ax, bx, cx) if 0 <= t < 1]
yRoots = [t for t in solveQuadratic(ay, by, cy) if 0 <= t < 1]
roots = xRoots + yRoots
points = [(a*t*t*t + b*t*t + c * t + d) for t in roots] + [pt1, pt4]
return calcBounds(points)
def splitLine(pt1, pt2, where, isHorizontal):
"""Split the line between pt1 and pt2 at position 'where', which
is an x coordinate if isHorizontal is False, a y coordinate if
isHorizontal is True. Return a list of two line segments if the
line was successfully split, or a list containing the original
line."""
pt1, pt2 = Numeric.array((pt1, pt2))
a = (pt2 - pt1)
b = pt1
ax = a[isHorizontal]
if ax == 0:
return [(pt1, pt2)]
t = float(where - b[isHorizontal]) / ax
midPt = a * t + b
return [(pt1, midPt), (midPt, pt2)]
def splitQuadratic(pt1, pt2, pt3, where, isHorizontal):
"""Split the quadratic curve between pt1, pt2 and pt3 at position 'where',
which is an x coordinate if isHorizontal is False, a y coordinate if
isHorizontal is True. Return a list of curve segments."""
pt1, pt2, pt3 = Numeric.array((pt1, pt2, pt3))
c = pt1
b = (pt2 - c) * 2.0
a = pt3 - c - b
solutions = solveQuadratic(a[isHorizontal], b[isHorizontal],
c[isHorizontal] - where)
solutions = [t for t in solutions if 0 <= t < 1]
solutions.sort()
if not solutions:
return [(pt1, pt2, pt3)]
segments = []
solutions.insert(0, 0.0)
solutions.append(1.0)
for i in range(len(solutions) - 1):
t1 = solutions[i]
t2 = solutions[i+1]
delta = (t2 - t1)
# calc new a, b and c
a1 = a * delta**2
b1 = (2*a*t1 + b) * delta
c1 = a*t1**2 + b*t1 + c
# calc new points
pt1 = c1
pt2 = (b1 * 0.5) + c1
pt3 = a1 + b1 + c1
segments.append((pt1, pt2, pt3))
return segments
def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal):
"""Split the cubic curve between pt1, pt2, pt3 and pt4 at position 'where',
which is an x coordinate if isHorizontal is False, a y coordinate if
isHorizontal is True. Return a list of curve segments."""
pt1, pt2, pt3, pt4 = Numeric.array((pt1, pt2, pt3, pt4))
d = pt1
c = (pt2 - d) * 3.0
b = (pt3 - pt2) * 3.0 - c
a = pt4 - d - c - b
solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal],
d[isHorizontal] - where)
solutions = [t for t in solutions if 0 <= t < 1]
solutions.sort()
if not solutions:
return [(pt1, pt2, pt3, pt4)]
segments = []
solutions.insert(0, 0.0)
solutions.append(1.0)
for i in range(len(solutions) - 1):
t1 = solutions[i]
t2 = solutions[i+1]
delta = (t2 - t1)
# calc new a, b, c and d
a1 = a * delta**3
b1 = (3*a*t1 + b) * delta**2
c1 = (2*b*t1 + c + 3*a*t1**2) * delta
d1 = a*t1**3 + b*t1**2 + c*t1 + d
# calc new points
pt1 = d1
pt2 = (c1 / 3.0) + d1
pt3 = (b1 + c1) / 3.0 + pt2
pt4 = a1 + d1 + c1 + b1
segments.append((pt1, pt2, pt3, pt4))
return segments
#
# Equation solvers.
#
from math import sqrt, acos, cos, pi
def solveQuadratic(a, b, c,
sqrt=sqrt):
"""Solve a quadratic equation where a, b and c are real.
a*x*x + b*x + c = 0
This function returns a list of roots.
"""
if a == 0.0:
if b == 0.0:
# We have a non-equation; therefore, we have no valid solution
roots = []
else:
# We have a linear equation with 1 root.
roots = [-c/b]
else:
# We have a true quadratic equation. Apply the quadratic formula to find two roots.
DD = b*b - 4.0*a*c
if DD >= 0.0:
roots = [(-b+sqrt(DD))/2.0/a, (-b-sqrt(DD))/2.0/a]
else:
# complex roots, ignore
roots = []
return roots
def solveCubic(a, b, c, d,
abs=abs, pow=pow, sqrt=sqrt, cos=cos, acos=acos, pi=pi):
"""Solve a cubic equation where a, b, c and d are real.
a*x*x*x + b*x*x + c*x + d = 0
This function returns a list of roots.
"""
#
# adapted from:
# CUBIC.C - Solve a cubic polynomial
# public domain by Ross Cottrell
# found at: http://www.strangecreations.com/library/snippets/Cubic.C
#
if abs(a) < 1e-6:
# don't just test for zero; for very small values of 'a' solveCubic()
# returns unreliable results, so we fall back to quad.
return solveQuadratic(b, c, d)
a1 = b/a
a2 = c/a
a3 = d/a
Q = (a1*a1 - 3.0*a2)/9.0
R = (2.0*a1*a1*a1 - 9.0*a1*a2 + 27.0*a3)/54.0
R2_Q3 = R*R - Q*Q*Q
if R2_Q3 <= 0:
theta = acos(R/sqrt(Q*Q*Q))
x0 = -2.0*sqrt(Q)*cos(theta/3.0) - a1/3.0
x1 = -2.0*sqrt(Q)*cos((theta+2.0*pi)/3.0) - a1/3.0
x2 = -2.0*sqrt(Q)*cos((theta+4.0*pi)/3.0) - a1/3.0
return [x0, x1, x2]
else:
x = pow(sqrt(R2_Q3)+abs(R), 1/3.0)
x = x + Q/x
if R >= 0.0:
x = -x
x = x - a1/3.0
return [x]