Move non-RoboFab code into a separate module
This commit is contained in:
parent
3e7c9a39d3
commit
3855de8887
@ -24,10 +24,8 @@ ensure that the resulting splines are interpolation-compatible.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
from math import hypot
|
from robofab.objects.objectsRF import RSegment
|
||||||
|
from cu2qu.geometry import Point, curve_to_quadratic, curves_to_quadratic
|
||||||
from fontTools.misc import bezierTools
|
|
||||||
from robofab.objects.objectsRF import RSegment, RPoint
|
|
||||||
|
|
||||||
|
|
||||||
def replace_segments(contour, segments):
|
def replace_segments(contour, segments):
|
||||||
@ -65,150 +63,17 @@ def zip(*args):
|
|||||||
return _zip(*args)
|
return _zip(*args)
|
||||||
|
|
||||||
|
|
||||||
class Point:
|
def points_to_quadratic(p0, p1, p2, p3, max_n, max_err):
|
||||||
"""An arithmetic-compatible 2D vector.
|
"""Return a quadratic spline approximating the cubic bezier defined by these
|
||||||
We use this because arithmetic with RoboFab's RPoint is prohibitively slow.
|
points (or collections of points).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, p):
|
if hasattr(p0, 'x'):
|
||||||
self.p = map(float, p)
|
curve = [Point([i.x, i.y]) for i in [p0, p1, p2, p3]]
|
||||||
|
return curve_to_quadratic(curve, max_n, max_err)
|
||||||
def __getitem__(self, key):
|
|
||||||
return self.p[key]
|
|
||||||
|
|
||||||
def __add__(self, other):
|
|
||||||
return Point([a + b for a, b in zip(self.p, other.p)])
|
|
||||||
|
|
||||||
def __sub__(self, other):
|
|
||||||
return Point([a - b for a, b in zip(self.p, other.p)])
|
|
||||||
|
|
||||||
def __mul__(self, n):
|
|
||||||
return Point([a * n for a in self.p])
|
|
||||||
|
|
||||||
def dist(self, other):
|
|
||||||
"""Calculate the distance between two points."""
|
|
||||||
return hypot(self[0] - other[0], self[1] - other[1])
|
|
||||||
|
|
||||||
def dot(self, other):
|
|
||||||
"""Return the dot product of two points."""
|
|
||||||
return self[0] * other[0] + self[1] * other[1]
|
|
||||||
|
|
||||||
|
|
||||||
def lerp(p1, p2, t):
|
|
||||||
"""Linearly interpolate between p1 and p2 at time t."""
|
|
||||||
return p1 * (1 - t) + p2 * t
|
|
||||||
|
|
||||||
|
|
||||||
def quadratic_bezier_at(p, t):
|
|
||||||
"""Return the point on a quadratic bezier curve at time t."""
|
|
||||||
|
|
||||||
return Point([
|
|
||||||
lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
|
||||||
lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t)])
|
|
||||||
|
|
||||||
|
|
||||||
def cubic_bezier_at(p, t):
|
|
||||||
"""Return the point on a cubic bezier curve at time t."""
|
|
||||||
|
|
||||||
return Point([
|
|
||||||
lerp(lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
|
||||||
lerp(lerp(p[1][0], p[2][0], t), lerp(p[2][0], p[3][0], t), t), t),
|
|
||||||
lerp(lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t),
|
|
||||||
lerp(lerp(p[1][1], p[2][1], t), lerp(p[2][1], p[3][1], t), t), t)])
|
|
||||||
|
|
||||||
|
|
||||||
def cubic_approx(p, t):
|
|
||||||
"""Approximate a cubic bezier curve with a quadratic one."""
|
|
||||||
|
|
||||||
p1 = lerp(p[0], p[1], 1.5)
|
|
||||||
p2 = lerp(p[3], p[2], 1.5)
|
|
||||||
return [p[0], lerp(p1, p2, t), p[3]]
|
|
||||||
|
|
||||||
|
|
||||||
def calc_intersect(p):
|
|
||||||
"""Calculate the intersection of ab and cd, given [a, b, c, d]."""
|
|
||||||
|
|
||||||
a, b, c, d = p
|
|
||||||
ab = b - a
|
|
||||||
cd = d - c
|
|
||||||
p = Point([-ab[1], ab[0]])
|
|
||||||
try:
|
|
||||||
h = p.dot(a - c) / p.dot(cd)
|
|
||||||
except ZeroDivisionError:
|
|
||||||
raise ValueError('Parallel vectors given to calc_intersect.')
|
|
||||||
return c + cd * h
|
|
||||||
|
|
||||||
|
|
||||||
def cubic_approx_spline(p, n):
|
|
||||||
"""Approximate a cubic bezier curve with a spline of n quadratics.
|
|
||||||
|
|
||||||
Returns None if n is 1 and the cubic's control vectors are parallel, since
|
|
||||||
no quadratic exists with this cubic's tangents.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if n == 1:
|
|
||||||
try:
|
|
||||||
p1 = calc_intersect(p)
|
|
||||||
except ValueError:
|
|
||||||
return None
|
|
||||||
return p[0], p1, p[3]
|
|
||||||
|
|
||||||
spline = [p[0]]
|
|
||||||
ts = [(float(i) / n) for i in range(1, n)]
|
|
||||||
segments = [
|
|
||||||
map(Point, segment)
|
|
||||||
for segment in bezierTools.splitCubicAtT(p[0], p[1], p[2], p[3], *ts)]
|
|
||||||
for i in range(len(segments)):
|
|
||||||
segment = cubic_approx(segments[i], float(i) / (n - 1))
|
|
||||||
spline.append(segment[1])
|
|
||||||
spline.append(p[3])
|
|
||||||
return spline
|
|
||||||
|
|
||||||
|
|
||||||
def curve_spline_dist(bezier, spline):
|
|
||||||
"""Max distance between a bezier and quadratic spline at sampled ts."""
|
|
||||||
|
|
||||||
TOTAL_STEPS = 20
|
|
||||||
error = 0
|
|
||||||
n = len(spline) - 2
|
|
||||||
steps = TOTAL_STEPS / n
|
|
||||||
for i in range(1, n + 1):
|
|
||||||
segment = [
|
|
||||||
spline[0] if i == 1 else segment[2],
|
|
||||||
spline[i],
|
|
||||||
spline[i + 1] if i == n else lerp(spline[i], spline[i + 1], 0.5)]
|
|
||||||
for j in range(steps):
|
|
||||||
p1 = cubic_bezier_at(bezier, (float(j) / steps + i - 1) / n)
|
|
||||||
p2 = quadratic_bezier_at(segment, float(j) / steps)
|
|
||||||
error = max(error, p1.dist(p2))
|
|
||||||
return error
|
|
||||||
|
|
||||||
|
|
||||||
def curve_to_quadratic(p0, p1, p2, p3, max_n, max_err):
|
|
||||||
"""Return a quadratic spline approximating this cubic bezier."""
|
|
||||||
|
|
||||||
if not isinstance(p0, RPoint):
|
|
||||||
return curve_collection_to_quadratic(p0, p1, p2, p3, max_n, max_err)
|
|
||||||
|
|
||||||
p = [Point([i.x, i.y]) for i in [p0, p1, p2, p3]]
|
|
||||||
for n in range(1, max_n + 1):
|
|
||||||
spline = cubic_approx_spline(p, n)
|
|
||||||
if spline and curve_spline_dist(p, spline) <= max_err:
|
|
||||||
break
|
|
||||||
return spline
|
|
||||||
|
|
||||||
|
|
||||||
def curve_collection_to_quadratic(p0, p1, p2, p3, max_n, max_err):
|
|
||||||
"""Return quadratic splines approximating these cubic beziers."""
|
|
||||||
|
|
||||||
curves = [[Point([i.x, i.y]) for i in p] for p in zip(p0, p1, p2, p3)]
|
curves = [[Point([i.x, i.y]) for i in p] for p in zip(p0, p1, p2, p3)]
|
||||||
for n in range(1, max_n + 1):
|
return curves_to_quadratic(curves, max_n, max_err)
|
||||||
splines = [cubic_approx_spline(c, n) for c in curves]
|
|
||||||
if (all(splines) and
|
|
||||||
max(curve_spline_dist(c, s)
|
|
||||||
for c, s in zip(curves, splines)) <= max_err):
|
|
||||||
break
|
|
||||||
return splines
|
|
||||||
|
|
||||||
|
|
||||||
def segment_to_quadratic(contour, segment_id, max_n, max_err, report):
|
def segment_to_quadratic(contour, segment_id, max_n, max_err, report):
|
||||||
@ -221,7 +86,7 @@ def segment_to_quadratic(contour, segment_id, max_n, max_err, report):
|
|||||||
# assumes that a curve type will always be proceeded by another point on the
|
# assumes that a curve type will always be proceeded by another point on the
|
||||||
# same contour
|
# same contour
|
||||||
prev_segment = contour[segment_id - 1]
|
prev_segment = contour[segment_id - 1]
|
||||||
points = curve_to_quadratic(prev_segment.points[-1], segment.points[0],
|
points = points_to_quadratic(prev_segment.points[-1], segment.points[0],
|
||||||
segment.points[1], segment.points[2],
|
segment.points[1], segment.points[2],
|
||||||
max_n, max_err)
|
max_n, max_err)
|
||||||
|
|
||||||
|
158
Lib/cu2qu/geometry.py
Normal file
158
Lib/cu2qu/geometry.py
Normal file
@ -0,0 +1,158 @@
|
|||||||
|
# Copyright 2015 Google Inc. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from math import hypot
|
||||||
|
from fontTools.misc import bezierTools
|
||||||
|
|
||||||
|
|
||||||
|
class Point:
|
||||||
|
"""An arithmetic-compatible 2D vector.
|
||||||
|
We use this because arithmetic with RoboFab's RPoint is prohibitively slow.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, p):
|
||||||
|
self.p = map(float, p)
|
||||||
|
|
||||||
|
def __getitem__(self, key):
|
||||||
|
return self.p[key]
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
return Point([a + b for a, b in zip(self.p, other.p)])
|
||||||
|
|
||||||
|
def __sub__(self, other):
|
||||||
|
return Point([a - b for a, b in zip(self.p, other.p)])
|
||||||
|
|
||||||
|
def __mul__(self, n):
|
||||||
|
return Point([a * n for a in self.p])
|
||||||
|
|
||||||
|
def dist(self, other):
|
||||||
|
"""Calculate the distance between two points."""
|
||||||
|
return hypot(self[0] - other[0], self[1] - other[1])
|
||||||
|
|
||||||
|
def dot(self, other):
|
||||||
|
"""Return the dot product of two points."""
|
||||||
|
return sum(a * b for a, b in zip(self.p, other.p))
|
||||||
|
|
||||||
|
|
||||||
|
def lerp(p1, p2, t):
|
||||||
|
"""Linearly interpolate between p1 and p2 at time t."""
|
||||||
|
return p1 * (1 - t) + p2 * t
|
||||||
|
|
||||||
|
|
||||||
|
def quadratic_bezier_at(p, t):
|
||||||
|
"""Return the point on a quadratic bezier curve at time t."""
|
||||||
|
|
||||||
|
return Point([
|
||||||
|
lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
||||||
|
lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t)])
|
||||||
|
|
||||||
|
|
||||||
|
def cubic_bezier_at(p, t):
|
||||||
|
"""Return the point on a cubic bezier curve at time t."""
|
||||||
|
|
||||||
|
return Point([
|
||||||
|
lerp(lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
||||||
|
lerp(lerp(p[1][0], p[2][0], t), lerp(p[2][0], p[3][0], t), t), t),
|
||||||
|
lerp(lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t),
|
||||||
|
lerp(lerp(p[1][1], p[2][1], t), lerp(p[2][1], p[3][1], t), t), t)])
|
||||||
|
|
||||||
|
|
||||||
|
def cubic_approx(p, t):
|
||||||
|
"""Approximate a cubic bezier curve with a quadratic one."""
|
||||||
|
|
||||||
|
p1 = lerp(p[0], p[1], 1.5)
|
||||||
|
p2 = lerp(p[3], p[2], 1.5)
|
||||||
|
return [p[0], lerp(p1, p2, t), p[3]]
|
||||||
|
|
||||||
|
|
||||||
|
def calc_intersect(p):
|
||||||
|
"""Calculate the intersection of ab and cd, given [a, b, c, d]."""
|
||||||
|
|
||||||
|
a, b, c, d = p
|
||||||
|
ab = b - a
|
||||||
|
cd = d - c
|
||||||
|
p = Point([-ab[1], ab[0]])
|
||||||
|
try:
|
||||||
|
h = p.dot(a - c) / p.dot(cd)
|
||||||
|
except ZeroDivisionError:
|
||||||
|
raise ValueError('Parallel vectors given to calc_intersect.')
|
||||||
|
return c + cd * h
|
||||||
|
|
||||||
|
|
||||||
|
def cubic_approx_spline(p, n):
|
||||||
|
"""Approximate a cubic bezier curve with a spline of n quadratics.
|
||||||
|
|
||||||
|
Returns None if n is 1 and the cubic's control vectors are parallel, since
|
||||||
|
no quadratic exists with this cubic's tangents.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if n == 1:
|
||||||
|
try:
|
||||||
|
p1 = calc_intersect(p)
|
||||||
|
except ValueError:
|
||||||
|
return None
|
||||||
|
return p[0], p1, p[3]
|
||||||
|
|
||||||
|
spline = [p[0]]
|
||||||
|
ts = [(float(i) / n) for i in range(1, n)]
|
||||||
|
segments = [
|
||||||
|
map(Point, segment)
|
||||||
|
for segment in bezierTools.splitCubicAtT(p[0], p[1], p[2], p[3], *ts)]
|
||||||
|
for i in range(len(segments)):
|
||||||
|
segment = cubic_approx(segments[i], float(i) / (n - 1))
|
||||||
|
spline.append(segment[1])
|
||||||
|
spline.append(p[3])
|
||||||
|
return spline
|
||||||
|
|
||||||
|
|
||||||
|
def curve_spline_dist(bezier, spline):
|
||||||
|
"""Max distance between a bezier and quadratic spline at sampled ts."""
|
||||||
|
|
||||||
|
TOTAL_STEPS = 20
|
||||||
|
error = 0
|
||||||
|
n = len(spline) - 2
|
||||||
|
steps = TOTAL_STEPS / n
|
||||||
|
for i in range(1, n + 1):
|
||||||
|
segment = [
|
||||||
|
spline[0] if i == 1 else segment[2],
|
||||||
|
spline[i],
|
||||||
|
spline[i + 1] if i == n else lerp(spline[i], spline[i + 1], 0.5)]
|
||||||
|
for j in range(steps):
|
||||||
|
p1 = cubic_bezier_at(bezier, (float(j) / steps + i - 1) / n)
|
||||||
|
p2 = quadratic_bezier_at(segment, float(j) / steps)
|
||||||
|
error = max(error, p1.dist(p2))
|
||||||
|
return error
|
||||||
|
|
||||||
|
|
||||||
|
def curve_to_quadratic(p, max_n, max_err):
|
||||||
|
"""Return a quadratic spline approximating this cubic bezier."""
|
||||||
|
|
||||||
|
for n in range(1, max_n + 1):
|
||||||
|
spline = cubic_approx_spline(p, n)
|
||||||
|
if spline and curve_spline_dist(p, spline) <= max_err:
|
||||||
|
break
|
||||||
|
return spline
|
||||||
|
|
||||||
|
|
||||||
|
def curves_to_quadratic(curves, max_n, max_err):
|
||||||
|
"""Return quadratic splines approximating these cubic beziers."""
|
||||||
|
|
||||||
|
for n in range(1, max_n + 1):
|
||||||
|
splines = [cubic_approx_spline(c, n) for c in curves]
|
||||||
|
if (all(splines) and
|
||||||
|
max(curve_spline_dist(c, s)
|
||||||
|
for c, s in zip(curves, splines)) <= max_err):
|
||||||
|
break
|
||||||
|
return splines
|
Loading…
x
Reference in New Issue
Block a user