Move non-RoboFab code into a separate module
This commit is contained in:
parent
3e7c9a39d3
commit
3855de8887
@ -24,10 +24,8 @@ ensure that the resulting splines are interpolation-compatible.
|
||||
"""
|
||||
|
||||
|
||||
from math import hypot
|
||||
|
||||
from fontTools.misc import bezierTools
|
||||
from robofab.objects.objectsRF import RSegment, RPoint
|
||||
from robofab.objects.objectsRF import RSegment
|
||||
from cu2qu.geometry import Point, curve_to_quadratic, curves_to_quadratic
|
||||
|
||||
|
||||
def replace_segments(contour, segments):
|
||||
@ -65,150 +63,17 @@ def zip(*args):
|
||||
return _zip(*args)
|
||||
|
||||
|
||||
class Point:
|
||||
"""An arithmetic-compatible 2D vector.
|
||||
We use this because arithmetic with RoboFab's RPoint is prohibitively slow.
|
||||
def points_to_quadratic(p0, p1, p2, p3, max_n, max_err):
|
||||
"""Return a quadratic spline approximating the cubic bezier defined by these
|
||||
points (or collections of points).
|
||||
"""
|
||||
|
||||
def __init__(self, p):
|
||||
self.p = map(float, p)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.p[key]
|
||||
|
||||
def __add__(self, other):
|
||||
return Point([a + b for a, b in zip(self.p, other.p)])
|
||||
|
||||
def __sub__(self, other):
|
||||
return Point([a - b for a, b in zip(self.p, other.p)])
|
||||
|
||||
def __mul__(self, n):
|
||||
return Point([a * n for a in self.p])
|
||||
|
||||
def dist(self, other):
|
||||
"""Calculate the distance between two points."""
|
||||
return hypot(self[0] - other[0], self[1] - other[1])
|
||||
|
||||
def dot(self, other):
|
||||
"""Return the dot product of two points."""
|
||||
return self[0] * other[0] + self[1] * other[1]
|
||||
|
||||
|
||||
def lerp(p1, p2, t):
|
||||
"""Linearly interpolate between p1 and p2 at time t."""
|
||||
return p1 * (1 - t) + p2 * t
|
||||
|
||||
|
||||
def quadratic_bezier_at(p, t):
|
||||
"""Return the point on a quadratic bezier curve at time t."""
|
||||
|
||||
return Point([
|
||||
lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
||||
lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t)])
|
||||
|
||||
|
||||
def cubic_bezier_at(p, t):
|
||||
"""Return the point on a cubic bezier curve at time t."""
|
||||
|
||||
return Point([
|
||||
lerp(lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
||||
lerp(lerp(p[1][0], p[2][0], t), lerp(p[2][0], p[3][0], t), t), t),
|
||||
lerp(lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t),
|
||||
lerp(lerp(p[1][1], p[2][1], t), lerp(p[2][1], p[3][1], t), t), t)])
|
||||
|
||||
|
||||
def cubic_approx(p, t):
|
||||
"""Approximate a cubic bezier curve with a quadratic one."""
|
||||
|
||||
p1 = lerp(p[0], p[1], 1.5)
|
||||
p2 = lerp(p[3], p[2], 1.5)
|
||||
return [p[0], lerp(p1, p2, t), p[3]]
|
||||
|
||||
|
||||
def calc_intersect(p):
|
||||
"""Calculate the intersection of ab and cd, given [a, b, c, d]."""
|
||||
|
||||
a, b, c, d = p
|
||||
ab = b - a
|
||||
cd = d - c
|
||||
p = Point([-ab[1], ab[0]])
|
||||
try:
|
||||
h = p.dot(a - c) / p.dot(cd)
|
||||
except ZeroDivisionError:
|
||||
raise ValueError('Parallel vectors given to calc_intersect.')
|
||||
return c + cd * h
|
||||
|
||||
|
||||
def cubic_approx_spline(p, n):
|
||||
"""Approximate a cubic bezier curve with a spline of n quadratics.
|
||||
|
||||
Returns None if n is 1 and the cubic's control vectors are parallel, since
|
||||
no quadratic exists with this cubic's tangents.
|
||||
"""
|
||||
|
||||
if n == 1:
|
||||
try:
|
||||
p1 = calc_intersect(p)
|
||||
except ValueError:
|
||||
return None
|
||||
return p[0], p1, p[3]
|
||||
|
||||
spline = [p[0]]
|
||||
ts = [(float(i) / n) for i in range(1, n)]
|
||||
segments = [
|
||||
map(Point, segment)
|
||||
for segment in bezierTools.splitCubicAtT(p[0], p[1], p[2], p[3], *ts)]
|
||||
for i in range(len(segments)):
|
||||
segment = cubic_approx(segments[i], float(i) / (n - 1))
|
||||
spline.append(segment[1])
|
||||
spline.append(p[3])
|
||||
return spline
|
||||
|
||||
|
||||
def curve_spline_dist(bezier, spline):
|
||||
"""Max distance between a bezier and quadratic spline at sampled ts."""
|
||||
|
||||
TOTAL_STEPS = 20
|
||||
error = 0
|
||||
n = len(spline) - 2
|
||||
steps = TOTAL_STEPS / n
|
||||
for i in range(1, n + 1):
|
||||
segment = [
|
||||
spline[0] if i == 1 else segment[2],
|
||||
spline[i],
|
||||
spline[i + 1] if i == n else lerp(spline[i], spline[i + 1], 0.5)]
|
||||
for j in range(steps):
|
||||
p1 = cubic_bezier_at(bezier, (float(j) / steps + i - 1) / n)
|
||||
p2 = quadratic_bezier_at(segment, float(j) / steps)
|
||||
error = max(error, p1.dist(p2))
|
||||
return error
|
||||
|
||||
|
||||
def curve_to_quadratic(p0, p1, p2, p3, max_n, max_err):
|
||||
"""Return a quadratic spline approximating this cubic bezier."""
|
||||
|
||||
if not isinstance(p0, RPoint):
|
||||
return curve_collection_to_quadratic(p0, p1, p2, p3, max_n, max_err)
|
||||
|
||||
p = [Point([i.x, i.y]) for i in [p0, p1, p2, p3]]
|
||||
for n in range(1, max_n + 1):
|
||||
spline = cubic_approx_spline(p, n)
|
||||
if spline and curve_spline_dist(p, spline) <= max_err:
|
||||
break
|
||||
return spline
|
||||
|
||||
|
||||
def curve_collection_to_quadratic(p0, p1, p2, p3, max_n, max_err):
|
||||
"""Return quadratic splines approximating these cubic beziers."""
|
||||
if hasattr(p0, 'x'):
|
||||
curve = [Point([i.x, i.y]) for i in [p0, p1, p2, p3]]
|
||||
return curve_to_quadratic(curve, max_n, max_err)
|
||||
|
||||
curves = [[Point([i.x, i.y]) for i in p] for p in zip(p0, p1, p2, p3)]
|
||||
for n in range(1, max_n + 1):
|
||||
splines = [cubic_approx_spline(c, n) for c in curves]
|
||||
if (all(splines) and
|
||||
max(curve_spline_dist(c, s)
|
||||
for c, s in zip(curves, splines)) <= max_err):
|
||||
break
|
||||
return splines
|
||||
return curves_to_quadratic(curves, max_n, max_err)
|
||||
|
||||
|
||||
def segment_to_quadratic(contour, segment_id, max_n, max_err, report):
|
||||
@ -221,7 +86,7 @@ def segment_to_quadratic(contour, segment_id, max_n, max_err, report):
|
||||
# assumes that a curve type will always be proceeded by another point on the
|
||||
# same contour
|
||||
prev_segment = contour[segment_id - 1]
|
||||
points = curve_to_quadratic(prev_segment.points[-1], segment.points[0],
|
||||
points = points_to_quadratic(prev_segment.points[-1], segment.points[0],
|
||||
segment.points[1], segment.points[2],
|
||||
max_n, max_err)
|
||||
|
||||
|
158
Lib/cu2qu/geometry.py
Normal file
158
Lib/cu2qu/geometry.py
Normal file
@ -0,0 +1,158 @@
|
||||
# Copyright 2015 Google Inc. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from math import hypot
|
||||
from fontTools.misc import bezierTools
|
||||
|
||||
|
||||
class Point:
|
||||
"""An arithmetic-compatible 2D vector.
|
||||
We use this because arithmetic with RoboFab's RPoint is prohibitively slow.
|
||||
"""
|
||||
|
||||
def __init__(self, p):
|
||||
self.p = map(float, p)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.p[key]
|
||||
|
||||
def __add__(self, other):
|
||||
return Point([a + b for a, b in zip(self.p, other.p)])
|
||||
|
||||
def __sub__(self, other):
|
||||
return Point([a - b for a, b in zip(self.p, other.p)])
|
||||
|
||||
def __mul__(self, n):
|
||||
return Point([a * n for a in self.p])
|
||||
|
||||
def dist(self, other):
|
||||
"""Calculate the distance between two points."""
|
||||
return hypot(self[0] - other[0], self[1] - other[1])
|
||||
|
||||
def dot(self, other):
|
||||
"""Return the dot product of two points."""
|
||||
return sum(a * b for a, b in zip(self.p, other.p))
|
||||
|
||||
|
||||
def lerp(p1, p2, t):
|
||||
"""Linearly interpolate between p1 and p2 at time t."""
|
||||
return p1 * (1 - t) + p2 * t
|
||||
|
||||
|
||||
def quadratic_bezier_at(p, t):
|
||||
"""Return the point on a quadratic bezier curve at time t."""
|
||||
|
||||
return Point([
|
||||
lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
||||
lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t)])
|
||||
|
||||
|
||||
def cubic_bezier_at(p, t):
|
||||
"""Return the point on a cubic bezier curve at time t."""
|
||||
|
||||
return Point([
|
||||
lerp(lerp(lerp(p[0][0], p[1][0], t), lerp(p[1][0], p[2][0], t), t),
|
||||
lerp(lerp(p[1][0], p[2][0], t), lerp(p[2][0], p[3][0], t), t), t),
|
||||
lerp(lerp(lerp(p[0][1], p[1][1], t), lerp(p[1][1], p[2][1], t), t),
|
||||
lerp(lerp(p[1][1], p[2][1], t), lerp(p[2][1], p[3][1], t), t), t)])
|
||||
|
||||
|
||||
def cubic_approx(p, t):
|
||||
"""Approximate a cubic bezier curve with a quadratic one."""
|
||||
|
||||
p1 = lerp(p[0], p[1], 1.5)
|
||||
p2 = lerp(p[3], p[2], 1.5)
|
||||
return [p[0], lerp(p1, p2, t), p[3]]
|
||||
|
||||
|
||||
def calc_intersect(p):
|
||||
"""Calculate the intersection of ab and cd, given [a, b, c, d]."""
|
||||
|
||||
a, b, c, d = p
|
||||
ab = b - a
|
||||
cd = d - c
|
||||
p = Point([-ab[1], ab[0]])
|
||||
try:
|
||||
h = p.dot(a - c) / p.dot(cd)
|
||||
except ZeroDivisionError:
|
||||
raise ValueError('Parallel vectors given to calc_intersect.')
|
||||
return c + cd * h
|
||||
|
||||
|
||||
def cubic_approx_spline(p, n):
|
||||
"""Approximate a cubic bezier curve with a spline of n quadratics.
|
||||
|
||||
Returns None if n is 1 and the cubic's control vectors are parallel, since
|
||||
no quadratic exists with this cubic's tangents.
|
||||
"""
|
||||
|
||||
if n == 1:
|
||||
try:
|
||||
p1 = calc_intersect(p)
|
||||
except ValueError:
|
||||
return None
|
||||
return p[0], p1, p[3]
|
||||
|
||||
spline = [p[0]]
|
||||
ts = [(float(i) / n) for i in range(1, n)]
|
||||
segments = [
|
||||
map(Point, segment)
|
||||
for segment in bezierTools.splitCubicAtT(p[0], p[1], p[2], p[3], *ts)]
|
||||
for i in range(len(segments)):
|
||||
segment = cubic_approx(segments[i], float(i) / (n - 1))
|
||||
spline.append(segment[1])
|
||||
spline.append(p[3])
|
||||
return spline
|
||||
|
||||
|
||||
def curve_spline_dist(bezier, spline):
|
||||
"""Max distance between a bezier and quadratic spline at sampled ts."""
|
||||
|
||||
TOTAL_STEPS = 20
|
||||
error = 0
|
||||
n = len(spline) - 2
|
||||
steps = TOTAL_STEPS / n
|
||||
for i in range(1, n + 1):
|
||||
segment = [
|
||||
spline[0] if i == 1 else segment[2],
|
||||
spline[i],
|
||||
spline[i + 1] if i == n else lerp(spline[i], spline[i + 1], 0.5)]
|
||||
for j in range(steps):
|
||||
p1 = cubic_bezier_at(bezier, (float(j) / steps + i - 1) / n)
|
||||
p2 = quadratic_bezier_at(segment, float(j) / steps)
|
||||
error = max(error, p1.dist(p2))
|
||||
return error
|
||||
|
||||
|
||||
def curve_to_quadratic(p, max_n, max_err):
|
||||
"""Return a quadratic spline approximating this cubic bezier."""
|
||||
|
||||
for n in range(1, max_n + 1):
|
||||
spline = cubic_approx_spline(p, n)
|
||||
if spline and curve_spline_dist(p, spline) <= max_err:
|
||||
break
|
||||
return spline
|
||||
|
||||
|
||||
def curves_to_quadratic(curves, max_n, max_err):
|
||||
"""Return quadratic splines approximating these cubic beziers."""
|
||||
|
||||
for n in range(1, max_n + 1):
|
||||
splines = [cubic_approx_spline(c, n) for c in curves]
|
||||
if (all(splines) and
|
||||
max(curve_spline_dist(c, s)
|
||||
for c, s in zip(curves, splines)) <= max_err):
|
||||
break
|
||||
return splines
|
Loading…
x
Reference in New Issue
Block a user