[perimeterPen] Add Gauss-Lobatto implementation for quadratic Bezier as well
Is twice faster than the exact algorithm.
This commit is contained in:
parent
9f1067a991
commit
3d4bd76a76
@ -30,16 +30,11 @@ class PerimeterPen(BasePen):
|
||||
self.value = 0
|
||||
self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math
|
||||
|
||||
# Choose which algorithm to use for cubic. Recursive algorithm is
|
||||
# accurate to arbitrary tolerances whereas the Lobatto algorithm has
|
||||
# fixed error characteristics, but is faster.
|
||||
#
|
||||
# The 0.0015 cutoff has been empirically determined by measuring error
|
||||
# of the Lobatto approach on a realworld font.
|
||||
if tolerance < 0.0015:
|
||||
self._addCubic = self._addCubicRecursive
|
||||
else:
|
||||
self._addCubic = self._addCubicLobatto
|
||||
# Choose which algorithm to use for quadratic and for cubic.
|
||||
# Lobatto is faster but has fixed error characteristic with no strong
|
||||
# error bound. The cutoff points are derived empirically.
|
||||
self._addCubic = self._addCubicLobatto if tolerance >= 0.0015 else self._addCubicRecursive
|
||||
self._addQuadratic = self._addQuadraticLobatto if tolerance >= 0.00075 else self._addQuadraticExact
|
||||
|
||||
def _moveTo(self, p0):
|
||||
self.__startPoint = p0
|
||||
@ -48,23 +43,21 @@ class PerimeterPen(BasePen):
|
||||
p0 = self._getCurrentPoint()
|
||||
self.value += _distance(p0, p1)
|
||||
|
||||
def _qCurveToOne(self, p1, p2):
|
||||
def _addQuadraticExact(self, c0, c1, c2):
|
||||
# Analytical solution to the length of a quadratic bezier.
|
||||
# I'll explain how I arrived at this later.
|
||||
p0 = self._getCurrentPoint()
|
||||
_p1 = complex(*p1)
|
||||
d0 = _p1 - complex(*p0)
|
||||
d1 = complex(*p2) - _p1
|
||||
d0 = c1 - c0
|
||||
d1 = c2 - c1
|
||||
d = d1 - d0
|
||||
n = d * 1j
|
||||
scale = abs(n)
|
||||
if scale == 0.:
|
||||
self._lineTo(p2)
|
||||
self.value += abs(c2-c0)
|
||||
return
|
||||
origDist = _dot(n,d0)
|
||||
if origDist == 0.:
|
||||
if _dot(d0,d1) >= 0:
|
||||
self._lineTo(p2)
|
||||
self.value += abs(c2-c0)
|
||||
return
|
||||
assert 0 # TODO handle cusps
|
||||
x0 = _dot(d,d0) / origDist
|
||||
@ -72,6 +65,29 @@ class PerimeterPen(BasePen):
|
||||
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
|
||||
self.value += Len
|
||||
|
||||
def _addQuadraticLobatto(self, c0, c1, c2):
|
||||
# Approximate length of quadratic Bezier curve using Lobatto quadrature
|
||||
# with n=4 points: endpoints and at t=.5±sqrt(1/5)/2
|
||||
#
|
||||
# This, essentially, approximates the length-of-derivative function
|
||||
# to be integrated with the best-matching fifth-degree polynomial
|
||||
# approximation of it.
|
||||
#
|
||||
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
|
||||
|
||||
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in (0, .5-(1/5)**.5/2, .5, .5+(1/5)**.5/2, 1),
|
||||
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
|
||||
v0 = abs(c1-c0)*0.166666666666667
|
||||
v1 = abs(-0.603005664791649*c0 + 0.372677996249965*c1 + 0.230327668541684*c2)
|
||||
v2 = abs(-0.230327668541684*c0 - 0.372677996249965*c1 + 0.603005664791649*c2)
|
||||
v3 = abs(c2-c1)*0.166666666666667
|
||||
|
||||
self.value += v0 + v1 + v2 + v3
|
||||
|
||||
def _qCurveToOne(self, p1, p2):
|
||||
p0 = self._getCurrentPoint()
|
||||
self._addQuadratic(complex(*p0), complex(*p1), complex(*p2))
|
||||
|
||||
def _addCubicRecursive(self, p0, p1, p2, p3):
|
||||
arch = abs(p0-p3)
|
||||
box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3)
|
||||
@ -84,7 +100,7 @@ class PerimeterPen(BasePen):
|
||||
|
||||
def _addCubicLobatto(self, c0, c1, c2, c3):
|
||||
# Approximate length of cubic Bezier curve using Lobatto quadrature
|
||||
# with n=5 points: endpoints, midpoint, and at t=.5±sqrt(21)/14
|
||||
# with n=5 points: endpoints, midpoint, and at t=.5±sqrt(3/7)/2
|
||||
#
|
||||
# This, essentially, approximates the length-of-derivative function
|
||||
# to be integrated with the best-matching seventh-degree polynomial
|
||||
@ -92,7 +108,7 @@ class PerimeterPen(BasePen):
|
||||
#
|
||||
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
|
||||
|
||||
# abs(beziercurvec[3].diff(t).subs({t:T})) for T in (0, .5-(3/28)**.5, .5, .5+(3/28)**.5, 1),
|
||||
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in (0, .5-(3/7)**.5/2, .5, .5+(3/7)**.5/2, 1),
|
||||
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
|
||||
v0 = abs(c1-c0)*.15
|
||||
v1 = abs(-0.558983582205757*c0 + 0.325650248872424*c1 + 0.208983582205757*c2 + 0.024349751127576*c3)
|
||||
|
Loading…
x
Reference in New Issue
Block a user