[interpolatable] Move some code into a helper file

This commit is contained in:
Behdad Esfahbod 2023-11-30 17:06:22 -05:00
parent d9b9b3a1f6
commit 67a8706ed4
3 changed files with 413 additions and 405 deletions

View File

@ -6,22 +6,19 @@ Call as:
$ fonttools varLib.interpolatable font1 font2 ... $ fonttools varLib.interpolatable font1 font2 ...
""" """
from fontTools.pens.basePen import AbstractPen, BasePen, DecomposingPen from .interpolatableHelpers import *
from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
from fontTools.pens.transformPen import TransformPen from fontTools.pens.transformPen import TransformPen
from fontTools.pens.boundsPen import ControlBoundsPen
from fontTools.pens.statisticsPen import StatisticsPen, StatisticsControlPen from fontTools.pens.statisticsPen import StatisticsPen, StatisticsControlPen
from fontTools.pens.momentsPen import OpenContourError from fontTools.pens.momentsPen import OpenContourError
from fontTools.varLib.models import piecewiseLinearMap, normalizeLocation from fontTools.varLib.models import piecewiseLinearMap, normalizeLocation
from fontTools.misc.fixedTools import floatToFixedToStr from fontTools.misc.fixedTools import floatToFixedToStr
from fontTools.misc.transform import Transform from fontTools.misc.transform import Transform
from collections import defaultdict, deque from collections import defaultdict
from types import SimpleNamespace from types import SimpleNamespace
from functools import wraps from functools import wraps
from pprint import pformat from pprint import pformat
from math import sqrt, copysign, atan2, pi from math import sqrt, atan2, pi
import itertools
import logging import logging
log = logging.getLogger("fontTools.varLib.interpolatable") log = logging.getLogger("fontTools.varLib.interpolatable")
@ -32,382 +29,6 @@ DEFAULT_KINKINESS_LENGTH = 0.002 # ratio of UPEM
DEFAULT_UPEM = 1000 DEFAULT_UPEM = 1000
def _rot_list(l, k):
"""Rotate list by k items forward. Ie. item at position 0 will be
at position k in returned list. Negative k is allowed."""
return l[-k:] + l[:-k]
class PerContourPen(BasePen):
def __init__(self, Pen, glyphset=None):
BasePen.__init__(self, glyphset)
self._glyphset = glyphset
self._Pen = Pen
self._pen = None
self.value = []
def _moveTo(self, p0):
self._newItem()
self._pen.moveTo(p0)
def _lineTo(self, p1):
self._pen.lineTo(p1)
def _qCurveToOne(self, p1, p2):
self._pen.qCurveTo(p1, p2)
def _curveToOne(self, p1, p2, p3):
self._pen.curveTo(p1, p2, p3)
def _closePath(self):
self._pen.closePath()
self._pen = None
def _endPath(self):
self._pen.endPath()
self._pen = None
def _newItem(self):
self._pen = pen = self._Pen()
self.value.append(pen)
class PerContourOrComponentPen(PerContourPen):
def addComponent(self, glyphName, transformation):
self._newItem()
self.value[-1].addComponent(glyphName, transformation)
class SimpleRecordingPointPen(AbstractPointPen):
def __init__(self):
self.value = []
def beginPath(self, identifier=None, **kwargs):
pass
def endPath(self) -> None:
pass
def addPoint(self, pt, segmentType=None):
self.value.append((pt, False if segmentType is None else True))
def _vdiff_hypot2(v0, v1):
s = 0
for x0, x1 in zip(v0, v1):
d = x1 - x0
s += d * d
return s
def _vdiff_hypot2_complex(v0, v1):
s = 0
for x0, x1 in zip(v0, v1):
d = x1 - x0
s += d.real * d.real + d.imag * d.imag
# This does the same but seems to be slower:
# s += (d * d.conjugate()).real
return s
def _hypot2_complex(d):
return d.real * d.real + d.imag * d.imag
def _matching_cost(G, matching):
return sum(G[i][j] for i, j in enumerate(matching))
def min_cost_perfect_bipartite_matching_scipy(G):
n = len(G)
rows, cols = linear_sum_assignment(G)
assert (rows == list(range(n))).all()
return list(cols), _matching_cost(G, cols)
def min_cost_perfect_bipartite_matching_munkres(G):
n = len(G)
cols = [None] * n
for row, col in Munkres().compute(G):
cols[row] = col
return cols, _matching_cost(G, cols)
def min_cost_perfect_bipartite_matching_bruteforce(G):
n = len(G)
if n > 6:
raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'")
# Otherwise just brute-force
permutations = itertools.permutations(range(n))
best = list(next(permutations))
best_cost = _matching_cost(G, best)
for p in permutations:
cost = _matching_cost(G, p)
if cost < best_cost:
best, best_cost = list(p), cost
return best, best_cost
try:
from scipy.optimize import linear_sum_assignment
min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy
except ImportError:
try:
from munkres import Munkres
min_cost_perfect_bipartite_matching = (
min_cost_perfect_bipartite_matching_munkres
)
except ImportError:
min_cost_perfect_bipartite_matching = (
min_cost_perfect_bipartite_matching_bruteforce
)
def _contour_vector_from_stats(stats):
# Don't change the order of items here.
# It's okay to add to the end, but otherwise, other
# code depends on it. Search for "covariance".
size = sqrt(abs(stats.area))
return (
copysign((size), stats.area),
stats.meanX,
stats.meanY,
stats.stddevX * 2,
stats.stddevY * 2,
stats.correlation * size,
)
def _matching_for_vectors(m0, m1):
n = len(m0)
identity_matching = list(range(n))
costs = [[_vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0]
(
matching,
matching_cost,
) = min_cost_perfect_bipartite_matching(costs)
identity_cost = sum(costs[i][i] for i in range(n))
return matching, matching_cost, identity_cost
def _points_characteristic_bits(points):
bits = 0
for pt, b in reversed(points):
bits = (bits << 1) | b
return bits
_NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR = 4
def _points_complex_vector(points):
vector = []
if not points:
return vector
points = [complex(*pt) for pt, _ in points]
n = len(points)
assert _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR == 4
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
while len(points) < _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR:
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
for i in range(n):
# The weights are magic numbers.
# The point itself
p0 = points[i]
vector.append(p0)
# The vector to the next point
p1 = points[i + 1]
d0 = p1 - p0
vector.append(d0 * 3)
# The turn vector
p2 = points[i + 2]
d1 = p2 - p1
vector.append(d1 - d0)
# The angle to the next point, as a cross product;
# Square root of, to match dimentionality of distance.
cross = d0.real * d1.imag - d0.imag * d1.real
cross = copysign(sqrt(abs(cross)), cross)
vector.append(cross * 4)
return vector
def _add_isomorphisms(points, isomorphisms, reverse):
reference_bits = _points_characteristic_bits(points)
n = len(points)
# if points[0][0] == points[-1][0]:
# abort
if reverse:
points = points[::-1]
bits = _points_characteristic_bits(points)
else:
bits = reference_bits
vector = _points_complex_vector(points)
assert len(vector) % n == 0
mult = len(vector) // n
mask = (1 << n) - 1
for i in range(n):
b = ((bits << (n - i)) & mask) | (bits >> i)
if b == reference_bits:
isomorphisms.append(
(_rot_list(vector, -i * mult), n - 1 - i if reverse else i, reverse)
)
def _find_parents_and_order(glyphsets, locations):
parents = [None] + list(range(len(glyphsets) - 1))
order = list(range(len(glyphsets)))
if locations:
# Order base master first
bases = (i for i, l in enumerate(locations) if all(v == 0 for v in l.values()))
if bases:
base = next(bases)
logging.info("Base master index %s, location %s", base, locations[base])
else:
base = 0
logging.warning("No base master location found")
# Form a minimum spanning tree of the locations
try:
from scipy.sparse.csgraph import minimum_spanning_tree
graph = [[0] * len(locations) for _ in range(len(locations))]
axes = set()
for l in locations:
axes.update(l.keys())
axes = sorted(axes)
vectors = [tuple(l.get(k, 0) for k in axes) for l in locations]
for i, j in itertools.combinations(range(len(locations)), 2):
graph[i][j] = _vdiff_hypot2(vectors[i], vectors[j])
tree = minimum_spanning_tree(graph)
rows, cols = tree.nonzero()
graph = defaultdict(set)
for row, col in zip(rows, cols):
graph[row].add(col)
graph[col].add(row)
# Traverse graph from the base and assign parents
parents = [None] * len(locations)
order = []
visited = set()
queue = deque([base])
while queue:
i = queue.popleft()
visited.add(i)
order.append(i)
for j in sorted(graph[i]):
if j not in visited:
parents[j] = i
queue.append(j)
except ImportError:
pass
log.info("Parents: %s", parents)
log.info("Order: %s", order)
return parents, order
def _transform_from_stats(stats, inverse=False):
# https://cookierobotics.com/007/
a = stats.varianceX
b = stats.covariance
c = stats.varianceY
delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5
lambda1 = (a + c) * 0.5 + delta # Major eigenvalue
lambda2 = (a + c) * 0.5 - delta # Minor eigenvalue
theta = atan2(lambda1 - a, b) if b != 0 else (pi * 0.5 if a < c else 0)
trans = Transform()
if lambda2 < 0:
# XXX This is a hack.
# The problem is that the covariance matrix is singular.
# This happens when the contour is a line, or a circle.
# In that case, the covariance matrix is not a good
# representation of the contour.
# We should probably detect this earlier and avoid
# computing the covariance matrix in the first place.
# But for now, we just avoid the division by zero.
lambda2 = 0
if inverse:
trans = trans.translate(-stats.meanX, -stats.meanY)
trans = trans.rotate(-theta)
trans = trans.scale(1 / sqrt(lambda1), 1 / sqrt(lambda2))
else:
trans = trans.scale(sqrt(lambda1), sqrt(lambda2))
trans = trans.rotate(theta)
trans = trans.translate(stats.meanX, stats.meanY)
return trans
class LerpGlyphSet:
def __init__(self, glyphset1, glyphset2, factor=0.5):
self.glyphset1 = glyphset1
self.glyphset2 = glyphset2
self.factor = factor
def __getitem__(self, glyphname):
return LerpGlyph(glyphname, self)
class LerpGlyph:
def __init__(self, glyphname, glyphset):
self.glyphset = glyphset
self.glyphname = glyphname
def draw(self, pen):
recording1 = DecomposingRecordingPen(self.glyphset.glyphset1)
self.glyphset.glyphset1[self.glyphname].draw(recording1)
recording2 = DecomposingRecordingPen(self.glyphset.glyphset2)
self.glyphset.glyphset2[self.glyphname].draw(recording2)
factor = self.glyphset.factor
for (op1, args1), (op2, args2) in zip(recording1.value, recording2.value):
if op1 != op2:
raise ValueError("Mismatching operations: %s, %s" % (op1, op2))
mid_args = [
(x1 + (x2 - x1) * factor, y1 + (y2 - y1) * factor)
for (x1, y1), (x2, y2) in zip(args1, args2)
]
getattr(pen, op1)(*mid_args)
def lerp_recordings(recording1, recording2, factor=0.5):
pen = RecordingPen()
value = pen.value
for (op1, args1), (op2, args2) in zip(recording1.value, recording2.value):
if op1 != op2:
raise ValueError("Mismatched operations: %s, %s" % (op1, op2))
if op1 == "addComponent":
mid_args = args1 # XXX Interpolate transformation?
else:
mid_args = [
(x1 + (x2 - x1) * factor, y1 + (y2 - y1) * factor)
for (x1, y1), (x2, y2) in zip(args1, args2)
]
value.append((op1, mid_args))
return pen
def test_gen( def test_gen(
glyphsets, glyphsets,
glyphs=None, glyphs=None,
@ -434,7 +55,7 @@ def test_gen(
# ... risks the sparse master being the first one, and only processing a subset of the glyphs # ... risks the sparse master being the first one, and only processing a subset of the glyphs
glyphs = {g for glyphset in glyphsets for g in glyphset.keys()} glyphs = {g for glyphset in glyphsets for g in glyphset.keys()}
parents, order = _find_parents_and_order(glyphsets, locations) parents, order = find_parents_and_order(glyphsets, locations)
def grand_parent(i, glyphname): def grand_parent(i, glyphname):
if i is None: if i is None:
@ -521,15 +142,15 @@ def test_gen(
}, },
) )
continue continue
contourGreenVectors.append(_contour_vector_from_stats(greenStats)) contourGreenVectors.append(contour_vector_from_stats(greenStats))
contourControlVectors.append(_contour_vector_from_stats(controlStats)) contourControlVectors.append(contour_vector_from_stats(controlStats))
# Save a "normalized" version of the outlines # Save a "normalized" version of the outlines
try: try:
rpen = DecomposingRecordingPen(glyphset) rpen = DecomposingRecordingPen(glyphset)
tpen = TransformPen( tpen = TransformPen(
rpen, _transform_from_stats(greenStats, inverse=True) rpen, transform_from_stats(greenStats, inverse=True)
) )
contour.replay(tpen) contour.replay(tpen)
contourPensNormalized.append(rpen) contourPensNormalized.append(rpen)
@ -539,7 +160,7 @@ def test_gen(
greenStats = StatisticsPen(glyphset=glyphset) greenStats = StatisticsPen(glyphset=glyphset)
rpen.replay(greenStats) rpen.replay(greenStats)
contourGreenVectorsNormalized.append( contourGreenVectorsNormalized.append(
_contour_vector_from_stats(greenStats) contour_vector_from_stats(greenStats)
) )
# Check starting point # Check starting point
@ -558,9 +179,9 @@ def test_gen(
contourIsomorphisms.append(isomorphisms) contourIsomorphisms.append(isomorphisms)
# Add rotations # Add rotations
_add_isomorphisms(points.value, isomorphisms, False) add_isomorphisms(points.value, isomorphisms, False)
# Add mirrored rotations # Add mirrored rotations
_add_isomorphisms(points.value, isomorphisms, True) add_isomorphisms(points.value, isomorphisms, True)
contourPoints.append(points.value) contourPoints.append(points.value)
@ -658,7 +279,7 @@ def test_gen(
matching_control, matching_control,
matching_cost_control, matching_cost_control,
identity_cost_control, identity_cost_control,
) = _matching_for_vectors(m0Control, m1Control) ) = matching_for_vectors(m0Control, m1Control)
done = matching_cost_control == identity_cost_control done = matching_cost_control == identity_cost_control
if not done: if not done:
m1Green = allGreenVectors[m1idx] m1Green = allGreenVectors[m1idx]
@ -667,7 +288,7 @@ def test_gen(
matching_green, matching_green,
matching_cost_green, matching_cost_green,
identity_cost_green, identity_cost_green,
) = _matching_for_vectors(m0Green, m1Green) ) = matching_for_vectors(m0Green, m1Green)
done = matching_cost_green == identity_cost_green done = matching_cost_green == identity_cost_green
if not done: if not done:
@ -682,7 +303,7 @@ def test_gen(
matching_control_reversed, matching_control_reversed,
matching_cost_control_reversed, matching_cost_control_reversed,
identity_cost_control_reversed, identity_cost_control_reversed,
) = _matching_for_vectors(m0Control, m1ControlReversed) ) = matching_for_vectors(m0Control, m1ControlReversed)
done = ( done = (
matching_cost_control_reversed == identity_cost_control_reversed matching_cost_control_reversed == identity_cost_control_reversed
) )
@ -692,7 +313,7 @@ def test_gen(
matching_control_reversed, matching_control_reversed,
matching_cost_control_reversed, matching_cost_control_reversed,
identity_cost_control_reversed, identity_cost_control_reversed,
) = _matching_for_vectors(m0Control, m1ControlReversed) ) = matching_for_vectors(m0Control, m1ControlReversed)
done = ( done = (
matching_cost_control_reversed == identity_cost_control_reversed matching_cost_control_reversed == identity_cost_control_reversed
) )
@ -775,7 +396,7 @@ def test_gen(
c0 = contour0[0] c0 = contour0[0]
# Next few lines duplicated below. # Next few lines duplicated below.
costs = [_vdiff_hypot2_complex(c0[0], c1[0]) for c1 in contour1] costs = [vdiff_hypot2_complex(c0[0], c1[0]) for c1 in contour1]
min_cost_idx, min_cost = min(enumerate(costs), key=lambda x: x[1]) min_cost_idx, min_cost = min(enumerate(costs), key=lambda x: x[1])
first_cost = costs[0] first_cost = costs[0]
@ -860,7 +481,7 @@ def test_gen(
# Next few lines duplicate from above. # Next few lines duplicate from above.
costs = [ costs = [
_vdiff_hypot2_complex(new_c0[0], new_c1[0]) vdiff_hypot2_complex(new_c0[0], new_c1[0])
for new_c1 in new_contour1 for new_c1 in new_contour1
] ]
min_cost_idx, min_cost = min( min_cost_idx, min_cost = min(
@ -905,14 +526,14 @@ def test_gen(
if normalized: if normalized:
midStats = StatisticsPen(glyphset=None) midStats = StatisticsPen(glyphset=None)
tpen = TransformPen( tpen = TransformPen(
midStats, _transform_from_stats(midStats, inverse=True) midStats, transform_from_stats(midStats, inverse=True)
) )
contour.replay(tpen) contour.replay(tpen)
else: else:
midStats = StatisticsPen(glyphset=None) midStats = StatisticsPen(glyphset=None)
contour.replay(midStats) contour.replay(midStats)
midVector = _contour_vector_from_stats(midStats) midVector = contour_vector_from_stats(midStats)
m0Vec = ( m0Vec = (
m0Vectors[ix] if not normalized else m0VectorsNormalized[ix] m0Vectors[ix] if not normalized else m0VectorsNormalized[ix]

View File

@ -0,0 +1,384 @@
from fontTools.pens.basePen import AbstractPen, BasePen, DecomposingPen
from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
from fontTools.misc.transform import Transform
from collections import defaultdict, deque
from math import sqrt, copysign, atan2, pi
import itertools
import logging
log = logging.getLogger("fontTools.varLib.interpolatable")
def rot_list(l, k):
"""Rotate list by k items forward. Ie. item at position 0 will be
at position k in returned list. Negative k is allowed."""
return l[-k:] + l[:-k]
class PerContourPen(BasePen):
def __init__(self, Pen, glyphset=None):
BasePen.__init__(self, glyphset)
self._glyphset = glyphset
self._Pen = Pen
self._pen = None
self.value = []
def _moveTo(self, p0):
self._newItem()
self._pen.moveTo(p0)
def _lineTo(self, p1):
self._pen.lineTo(p1)
def _qCurveToOne(self, p1, p2):
self._pen.qCurveTo(p1, p2)
def _curveToOne(self, p1, p2, p3):
self._pen.curveTo(p1, p2, p3)
def _closePath(self):
self._pen.closePath()
self._pen = None
def _endPath(self):
self._pen.endPath()
self._pen = None
def _newItem(self):
self._pen = pen = self._Pen()
self.value.append(pen)
class PerContourOrComponentPen(PerContourPen):
def addComponent(self, glyphName, transformation):
self._newItem()
self.value[-1].addComponent(glyphName, transformation)
class SimpleRecordingPointPen(AbstractPointPen):
def __init__(self):
self.value = []
def beginPath(self, identifier=None, **kwargs):
pass
def endPath(self) -> None:
pass
def addPoint(self, pt, segmentType=None):
self.value.append((pt, False if segmentType is None else True))
def vdiff_hypot2(v0, v1):
s = 0
for x0, x1 in zip(v0, v1):
d = x1 - x0
s += d * d
return s
def vdiff_hypot2_complex(v0, v1):
s = 0
for x0, x1 in zip(v0, v1):
d = x1 - x0
s += d.real * d.real + d.imag * d.imag
# This does the same but seems to be slower:
# s += (d * d.conjugate()).real
return s
def matching_cost(G, matching):
return sum(G[i][j] for i, j in enumerate(matching))
def min_cost_perfect_bipartite_matching_scipy(G):
n = len(G)
rows, cols = linear_sum_assignment(G)
assert (rows == list(range(n))).all()
return list(cols), matching_cost(G, cols)
def min_cost_perfect_bipartite_matching_munkres(G):
n = len(G)
cols = [None] * n
for row, col in Munkres().compute(G):
cols[row] = col
return cols, matching_cost(G, cols)
def min_cost_perfect_bipartite_matching_bruteforce(G):
n = len(G)
if n > 6:
raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'")
# Otherwise just brute-force
permutations = itertools.permutations(range(n))
best = list(next(permutations))
best_cost = matching_cost(G, best)
for p in permutations:
cost = matching_cost(G, p)
if cost < best_cost:
best, best_cost = list(p), cost
return best, best_cost
try:
from scipy.optimize import linear_sum_assignment
min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy
except ImportError:
try:
from munkres import Munkres
min_cost_perfect_bipartite_matching = (
min_cost_perfect_bipartite_matching_munkres
)
except ImportError:
min_cost_perfect_bipartite_matching = (
min_cost_perfect_bipartite_matching_bruteforce
)
def contour_vector_from_stats(stats):
# Don't change the order of items here.
# It's okay to add to the end, but otherwise, other
# code depends on it. Search for "covariance".
size = sqrt(abs(stats.area))
return (
copysign((size), stats.area),
stats.meanX,
stats.meanY,
stats.stddevX * 2,
stats.stddevY * 2,
stats.correlation * size,
)
def matching_for_vectors(m0, m1):
n = len(m0)
identity_matching = list(range(n))
costs = [[vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0]
(
matching,
matching_cost,
) = min_cost_perfect_bipartite_matching(costs)
identity_cost = sum(costs[i][i] for i in range(n))
return matching, matching_cost, identity_cost
def points_characteristic_bits(points):
bits = 0
for pt, b in reversed(points):
bits = (bits << 1) | b
return bits
_NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR = 4
def points_complex_vector(points):
vector = []
if not points:
return vector
points = [complex(*pt) for pt, _ in points]
n = len(points)
assert _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR == 4
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
while len(points) < _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR:
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
for i in range(n):
# The weights are magic numbers.
# The point itself
p0 = points[i]
vector.append(p0)
# The vector to the next point
p1 = points[i + 1]
d0 = p1 - p0
vector.append(d0 * 3)
# The turn vector
p2 = points[i + 2]
d1 = p2 - p1
vector.append(d1 - d0)
# The angle to the next point, as a cross product;
# Square root of, to match dimentionality of distance.
cross = d0.real * d1.imag - d0.imag * d1.real
cross = copysign(sqrt(abs(cross)), cross)
vector.append(cross * 4)
return vector
def add_isomorphisms(points, isomorphisms, reverse):
reference_bits = points_characteristic_bits(points)
n = len(points)
# if points[0][0] == points[-1][0]:
# abort
if reverse:
points = points[::-1]
bits = points_characteristic_bits(points)
else:
bits = reference_bits
vector = points_complex_vector(points)
assert len(vector) % n == 0
mult = len(vector) // n
mask = (1 << n) - 1
for i in range(n):
b = ((bits << (n - i)) & mask) | (bits >> i)
if b == reference_bits:
isomorphisms.append(
(rot_list(vector, -i * mult), n - 1 - i if reverse else i, reverse)
)
def find_parents_and_order(glyphsets, locations):
parents = [None] + list(range(len(glyphsets) - 1))
order = list(range(len(glyphsets)))
if locations:
# Order base master first
bases = (i for i, l in enumerate(locations) if all(v == 0 for v in l.values()))
if bases:
base = next(bases)
logging.info("Base master index %s, location %s", base, locations[base])
else:
base = 0
logging.warning("No base master location found")
# Form a minimum spanning tree of the locations
try:
from scipy.sparse.csgraph import minimum_spanning_tree
graph = [[0] * len(locations) for _ in range(len(locations))]
axes = set()
for l in locations:
axes.update(l.keys())
axes = sorted(axes)
vectors = [tuple(l.get(k, 0) for k in axes) for l in locations]
for i, j in itertools.combinations(range(len(locations)), 2):
graph[i][j] = vdiff_hypot2(vectors[i], vectors[j])
tree = minimum_spanning_tree(graph)
rows, cols = tree.nonzero()
graph = defaultdict(set)
for row, col in zip(rows, cols):
graph[row].add(col)
graph[col].add(row)
# Traverse graph from the base and assign parents
parents = [None] * len(locations)
order = []
visited = set()
queue = deque([base])
while queue:
i = queue.popleft()
visited.add(i)
order.append(i)
for j in sorted(graph[i]):
if j not in visited:
parents[j] = i
queue.append(j)
except ImportError:
pass
log.info("Parents: %s", parents)
log.info("Order: %s", order)
return parents, order
def transform_from_stats(stats, inverse=False):
# https://cookierobotics.com/007/
a = stats.varianceX
b = stats.covariance
c = stats.varianceY
delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5
lambda1 = (a + c) * 0.5 + delta # Major eigenvalue
lambda2 = (a + c) * 0.5 - delta # Minor eigenvalue
theta = atan2(lambda1 - a, b) if b != 0 else (pi * 0.5 if a < c else 0)
trans = Transform()
if lambda2 < 0:
# XXX This is a hack.
# The problem is that the covariance matrix is singular.
# This happens when the contour is a line, or a circle.
# In that case, the covariance matrix is not a good
# representation of the contour.
# We should probably detect this earlier and avoid
# computing the covariance matrix in the first place.
# But for now, we just avoid the division by zero.
lambda2 = 0
if inverse:
trans = trans.translate(-stats.meanX, -stats.meanY)
trans = trans.rotate(-theta)
trans = trans.scale(1 / sqrt(lambda1), 1 / sqrt(lambda2))
else:
trans = trans.scale(sqrt(lambda1), sqrt(lambda2))
trans = trans.rotate(theta)
trans = trans.translate(stats.meanX, stats.meanY)
return trans
class LerpGlyphSet:
def __init__(self, glyphset1, glyphset2, factor=0.5):
self.glyphset1 = glyphset1
self.glyphset2 = glyphset2
self.factor = factor
def __getitem__(self, glyphname):
return LerpGlyph(glyphname, self)
class LerpGlyph:
def __init__(self, glyphname, glyphset):
self.glyphset = glyphset
self.glyphname = glyphname
def draw(self, pen):
recording1 = DecomposingRecordingPen(self.glyphset.glyphset1)
self.glyphset.glyphset1[self.glyphname].draw(recording1)
recording2 = DecomposingRecordingPen(self.glyphset.glyphset2)
self.glyphset.glyphset2[self.glyphname].draw(recording2)
factor = self.glyphset.factor
for (op1, args1), (op2, args2) in zip(recording1.value, recording2.value):
if op1 != op2:
raise ValueError("Mismatching operations: %s, %s" % (op1, op2))
mid_args = [
(x1 + (x2 - x1) * factor, y1 + (y2 - y1) * factor)
for (x1, y1), (x2, y2) in zip(args1, args2)
]
getattr(pen, op1)(*mid_args)
def lerp_recordings(recording1, recording2, factor=0.5):
pen = RecordingPen()
value = pen.value
for (op1, args1), (op2, args2) in zip(recording1.value, recording2.value):
if op1 != op2:
raise ValueError("Mismatched operations: %s, %s" % (op1, op2))
if op1 == "addComponent":
mid_args = args1 # XXX Interpolate transformation?
else:
mid_args = [
(x1 + (x2 - x1) * factor, y1 + (y2 - y1) * factor)
for (x1, y1), (x2, y2) in zip(args1, args2)
]
value.append((op1, mid_args))
return pen

View File

@ -226,9 +226,10 @@ class InterpolatablePlot:
cr.rectangle(xx - self.pad * 0.7, y, 1.5 * self.pad, self.line_height) cr.rectangle(xx - self.pad * 0.7, y, 1.5 * self.pad, self.line_height)
cr.set_source_rgb(*self.fill_color) cr.set_source_rgb(*self.fill_color)
cr.fill_preserve() cr.fill_preserve()
cr.set_source_rgb(*self.stroke_color) if self.stroke_color:
cr.set_line_width(self.stroke_width) cr.set_source_rgb(*self.stroke_color)
cr.stroke_preserve() cr.set_line_width(self.stroke_width)
cr.stroke_preserve()
cr.set_source_rgba(*self.weight_issue_contour_color) cr.set_source_rgba(*self.weight_issue_contour_color)
cr.fill() cr.fill()
y -= self.pad + self.line_height y -= self.pad + self.line_height
@ -237,11 +238,13 @@ class InterpolatablePlot:
"Colored contours: contours with the wrong order", x=xxx, y=y, width=width "Colored contours: contours with the wrong order", x=xxx, y=y, width=width
) )
cr.rectangle(xx - self.pad * 0.7, y, 1.5 * self.pad, self.line_height) cr.rectangle(xx - self.pad * 0.7, y, 1.5 * self.pad, self.line_height)
cr.set_source_rgb(*self.fill_color) if self.fill_color:
cr.fill_preserve() cr.set_source_rgb(*self.fill_color)
cr.set_source_rgb(*self.stroke_color) cr.fill_preserve()
cr.set_line_width(self.stroke_width) if self.stroke_color:
cr.stroke_preserve() cr.set_source_rgb(*self.stroke_color)
cr.set_line_width(self.stroke_width)
cr.stroke_preserve()
cr.set_source_rgba(*self.contour_colors[0], self.contour_alpha) cr.set_source_rgba(*self.contour_colors[0], self.contour_alpha)
cr.fill() cr.fill()
y -= self.pad + self.line_height y -= self.pad + self.line_height