[StatisticsPen] Some more (probably over-) optimization

This commit is contained in:
Behdad Esfahbod 2017-02-24 15:20:38 -08:00
parent 8335af0d1d
commit a02a429573

View File

@ -8,48 +8,54 @@ __all__ = ["StatisticsPen"]
class StatisticsPen(MomentsPen): class StatisticsPen(MomentsPen):
# Center of mass def __init__(self, glyphset=None):
# https://en.wikipedia.org/wiki/Center_of_mass#A_continuous_volume MomentsPen.__init__(self, glyphset=glyphset)
@property self.__zero()
def meanX(self):
return self.momentX / self.area if self.area else 0
@property
def meanY(self):
return self.momentY / self.area if self.area else 0
# Var(X) = E[X^2] - E[X]^2 def _closePath(self):
@property MomentsPen._closePath(self)
def varianceX(self): self.__update()
return self.momentXX / self.area - self.meanX**2 if self.area else 0
@property
def varianceY(self):
return self.momentYY / self.area - self.meanY**2 if self.area else 0
@property def __zero(self):
def stddevX(self): self.meanX = 0
variance = self.varianceX self.meanY = 0
return math.copysign(abs(variance)**.5, variance) self.varianceX = 0
@property self.varianceY = 0
def stddevY(self): self.stddevX = 0
variance = self.varianceY self.stddevY = 0
return math.copysign(abs(variance)**.5, variance) self.covariance = 0
self.correlation = 0
self.slant = 0
# Covariance(X,Y) = ( E[X.Y] - E[X]E[Y] ) def __update(self):
@property
def covariance(self):
return self.momentXY / self.area - self.meanX*self.meanY if self.area else 0
# Correlation(X,Y) = Covariance(X,Y) / ( stddev(X) * stddev(Y) ) area = self.area
# https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient if not area:
@property self.__zero()
def correlation(self): return
correlation = self.covariance / (self.stddevX * self.stddevY) if self.area else 0
return correlation if abs(correlation) > 1e-3 else 0
@property # Center of mass
def slant(self): # https://en.wikipedia.org/wiki/Center_of_mass#A_continuous_volume
slant = self.covariance / self.varianceY if self.area else 0 self.meanX = meanX = self.momentX / area
return slant if abs(slant) > 1e-3 else 0 self.meanY = meanY = self.momentY / area
# Var(X) = E[X^2] - E[X]^2
self.varianceX = varianceX = self.momentXX / area - meanX**2
self.varianceY = varianceY = self.momentYY / area - meanY**2
self.stddevX = stddevX = math.copysign(abs(varianceX)**.5, varianceX)
self.stddevY = stddevY = math.copysign(abs(varianceY)**.5, varianceY)
# Covariance(X,Y) = ( E[X.Y] - E[X]E[Y] )
self.covariance = covariance = self.momentXY / area - meanX*meanY
# Correlation(X,Y) = Covariance(X,Y) / ( stddev(X) * stddev(Y) )
# https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
correlation = covariance / (stddevX * stddevY)
self.correlation = correlation if abs(correlation) > 1e-3 else 0
slant = covariance / varianceY
self.slant = slant if abs(slant) > 1e-3 else 0
def _test(glyphset, upem, glyphs): def _test(glyphset, upem, glyphs):