Move arc length calculations from pens.perimeterPen to misc.bezierTools
This commit is contained in:
parent
62df8ba108
commit
dd558f5df8
@ -1,10 +1,20 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""fontTools.misc.bezierTools.py -- tools for working with bezier path segments.
|
||||
"""
|
||||
|
||||
from __future__ import print_function, division, absolute_import
|
||||
from fontTools.misc.arrayTools import calcBounds
|
||||
from fontTools.misc.py23 import *
|
||||
import math
|
||||
|
||||
|
||||
__all__ = [
|
||||
"approximateCubicArcLength",
|
||||
"approximateCubicArcLengthC",
|
||||
"approximateQuadraticArcLength",
|
||||
"approximateQuadraticArcLengthC",
|
||||
"calcQuadraticArcLength",
|
||||
"calcQuadraticArcLengthC",
|
||||
"calcQuadraticBounds",
|
||||
"calcCubicBounds",
|
||||
"splitLine",
|
||||
@ -16,12 +26,98 @@ __all__ = [
|
||||
"solveCubic",
|
||||
]
|
||||
|
||||
from fontTools.misc.arrayTools import calcBounds
|
||||
|
||||
epsilonDigits = 6
|
||||
epsilon = 1e-10
|
||||
|
||||
|
||||
def _dot(v1, v2):
|
||||
return (v1 * v2.conjugate()).real
|
||||
|
||||
|
||||
def _intSecAtan(x):
|
||||
# In : sympy.integrate(sp.sec(sp.atan(x)))
|
||||
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
|
||||
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2
|
||||
|
||||
|
||||
def calcQuadraticArcLength(pt1, pt2, pt3, approximate_fallback=False):
|
||||
"""Return the arc length for a qudratic bezier segment.
|
||||
pt1 and pt3 are the "anchor" points, pt2 is the "handle".
|
||||
|
||||
>>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment
|
||||
0.0
|
||||
>>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points
|
||||
80.0
|
||||
>>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical
|
||||
80.0
|
||||
>>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points
|
||||
107.70329614269008
|
||||
>>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0))
|
||||
154.02976155645263
|
||||
>>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0))
|
||||
120.21581243984076
|
||||
>>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50))
|
||||
102.53273816445825
|
||||
>>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0), True) # collinear points, control point outside, exact result should be 66.6666666666667
|
||||
69.41755572720999
|
||||
>>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0), True) # collinear points, looping back, exact result should be 40
|
||||
34.4265186329548
|
||||
"""
|
||||
return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), approximate_fallback)
|
||||
|
||||
|
||||
def calcQuadraticArcLengthC(pt1, pt2, pt3, approximate_fallback=False):
|
||||
"""Return the arc length for a qudratic bezier segment using complex points.
|
||||
pt1 and pt3 are the "anchor" points, pt2 is the "handle"."""
|
||||
|
||||
# Analytical solution to the length of a quadratic bezier.
|
||||
# I'll explain how I arrived at this later.
|
||||
d0 = pt2 - pt1
|
||||
d1 = pt3 - pt2
|
||||
d = d1 - d0
|
||||
n = d * 1j
|
||||
scale = abs(n)
|
||||
if scale == 0.:
|
||||
return abs(pt3-pt1)
|
||||
origDist = _dot(n,d0)
|
||||
if origDist == 0.:
|
||||
if _dot(d0,d1) >= 0:
|
||||
return abs(pt3-pt1)
|
||||
if approximate_fallback:
|
||||
return approximateQuadraticArcLengthC(pt1, pt2, pt3)
|
||||
assert 0 # TODO handle cusps
|
||||
x0 = _dot(d,d0) / origDist
|
||||
x1 = _dot(d,d1) / origDist
|
||||
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
|
||||
return Len
|
||||
|
||||
|
||||
def approximateQuadraticArcLength(pt1, pt2, pt3):
|
||||
# Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature
|
||||
# with n=3 points.
|
||||
return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
|
||||
|
||||
|
||||
def approximateQuadraticArcLengthC(pt1, pt2, pt3):
|
||||
# Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature
|
||||
# with n=3 points for complex points.
|
||||
#
|
||||
# This, essentially, approximates the length-of-derivative function
|
||||
# to be integrated with the best-matching fifth-degree polynomial
|
||||
# approximation of it.
|
||||
#
|
||||
#https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
|
||||
|
||||
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
|
||||
# weighted 5/18, 8/18, 5/18 respectively.
|
||||
v0 = abs(-0.492943519233745*pt1 + 0.430331482911935*pt2 + 0.0626120363218102*pt3)
|
||||
v1 = abs(pt3-pt1)*0.4444444444444444
|
||||
v2 = abs(-0.0626120363218102*pt1 - 0.430331482911935*pt2 + 0.492943519233745*pt3)
|
||||
|
||||
return v0 + v1 + v2
|
||||
|
||||
|
||||
def calcQuadraticBounds(pt1, pt2, pt3):
|
||||
"""Return the bounding rectangle for a qudratic bezier segment.
|
||||
pt1 and pt3 are the "anchor" points, pt2 is the "handle".
|
||||
@ -43,6 +139,50 @@ def calcQuadraticBounds(pt1, pt2, pt3):
|
||||
return calcBounds(points)
|
||||
|
||||
|
||||
def approximateCubicArcLength(pt1, pt2, pt3, pt4):
|
||||
"""Return the approximate arc length for a cubic bezier segment.
|
||||
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles".
|
||||
|
||||
>>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0))
|
||||
190.04332968932817
|
||||
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100))
|
||||
154.8852074945903
|
||||
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150.
|
||||
149.99999999999991
|
||||
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150.
|
||||
136.9267662156362
|
||||
>>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp
|
||||
154.80848416537057
|
||||
"""
|
||||
# Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature
|
||||
# with n=5 points.
|
||||
return approximateCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4))
|
||||
|
||||
|
||||
def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
|
||||
"""Return the approximate arc length for a cubic bezier segment of complex points.
|
||||
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles"."""
|
||||
|
||||
# Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature
|
||||
# with n=5 points for complex points.
|
||||
#
|
||||
# This, essentially, approximates the length-of-derivative function
|
||||
# to be integrated with the best-matching seventh-degree polynomial
|
||||
# approximation of it.
|
||||
#
|
||||
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
|
||||
|
||||
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
|
||||
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
|
||||
v0 = abs(pt2-pt1)*.15
|
||||
v1 = abs(-0.558983582205757*pt1 + 0.325650248872424*pt2 + 0.208983582205757*pt3 + 0.024349751127576*pt4)
|
||||
v2 = abs(pt4-pt1+pt3-pt2)*0.26666666666666666
|
||||
v3 = abs(-0.024349751127576*pt1 - 0.208983582205757*pt2 - 0.325650248872424*pt3 + 0.558983582205757*pt4)
|
||||
v4 = abs(pt4-pt3)*.15
|
||||
|
||||
return v0 + v1 + v2 + v3 + v4
|
||||
|
||||
|
||||
def calcCubicBounds(pt1, pt2, pt3, pt4):
|
||||
"""Return the bounding rectangle for a cubic bezier segment.
|
||||
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles".
|
||||
|
@ -4,7 +4,7 @@
|
||||
from __future__ import print_function, division, absolute_import
|
||||
from fontTools.misc.py23 import *
|
||||
from fontTools.pens.basePen import BasePen
|
||||
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT
|
||||
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT, approximateQuadraticArcLengthC, calcQuadraticArcLengthC, approximateCubicArcLengthC
|
||||
import math
|
||||
|
||||
|
||||
@ -13,12 +13,6 @@ __all__ = ["PerimeterPen"]
|
||||
|
||||
def _distance(p0, p1):
|
||||
return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
|
||||
def _dot(v1, v2):
|
||||
return (v1 * v2.conjugate()).real
|
||||
def _intSecAtan(x):
|
||||
# In : sympy.integrate(sp.sec(sp.atan(x)))
|
||||
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
|
||||
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2
|
||||
|
||||
def _split_cubic_into_two(p0, p1, p2, p3):
|
||||
mid = (p0 + 3 * (p1 + p2) + p3) * .125
|
||||
@ -52,44 +46,10 @@ class PerimeterPen(BasePen):
|
||||
self.value += _distance(p0, p1)
|
||||
|
||||
def _addQuadraticExact(self, c0, c1, c2):
|
||||
# Analytical solution to the length of a quadratic bezier.
|
||||
# I'll explain how I arrived at this later.
|
||||
d0 = c1 - c0
|
||||
d1 = c2 - c1
|
||||
d = d1 - d0
|
||||
n = d * 1j
|
||||
scale = abs(n)
|
||||
if scale == 0.:
|
||||
self.value += abs(c2-c0)
|
||||
return
|
||||
origDist = _dot(n,d0)
|
||||
if origDist == 0.:
|
||||
if _dot(d0,d1) >= 0:
|
||||
self.value += abs(c2-c0)
|
||||
return
|
||||
assert 0 # TODO handle cusps
|
||||
x0 = _dot(d,d0) / origDist
|
||||
x1 = _dot(d,d1) / origDist
|
||||
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
|
||||
self.value += Len
|
||||
self.value += calcQuadraticArcLengthC(c0, c1, c2)
|
||||
|
||||
def _addQuadraticQuadrature(self, c0, c1, c2):
|
||||
# Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature
|
||||
# with n=3 points.
|
||||
#
|
||||
# This, essentially, approximates the length-of-derivative function
|
||||
# to be integrated with the best-matching fifth-degree polynomial
|
||||
# approximation of it.
|
||||
#
|
||||
#https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
|
||||
|
||||
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
|
||||
# weighted 5/18, 8/18, 5/18 respectively.
|
||||
v0 = abs(-0.492943519233745*c0 + 0.430331482911935*c1 + 0.0626120363218102*c2)
|
||||
v1 = abs(c2-c0)*0.4444444444444444
|
||||
v2 = abs(-0.0626120363218102*c0 - 0.430331482911935*c1 + 0.492943519233745*c2)
|
||||
|
||||
self.value += v0 + v1 + v2
|
||||
self.value += approximateQuadraticArcLengthC(c0, c1, c2)
|
||||
|
||||
def _qCurveToOne(self, p1, p2):
|
||||
p0 = self._getCurrentPoint()
|
||||
@ -106,24 +66,7 @@ class PerimeterPen(BasePen):
|
||||
self._addCubicRecursive(*two)
|
||||
|
||||
def _addCubicQuadrature(self, c0, c1, c2, c3):
|
||||
# Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature
|
||||
# with n=5 points.
|
||||
#
|
||||
# This, essentially, approximates the length-of-derivative function
|
||||
# to be integrated with the best-matching seventh-degree polynomial
|
||||
# approximation of it.
|
||||
#
|
||||
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
|
||||
|
||||
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
|
||||
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
|
||||
v0 = abs(c1-c0)*.15
|
||||
v1 = abs(-0.558983582205757*c0 + 0.325650248872424*c1 + 0.208983582205757*c2 + 0.024349751127576*c3)
|
||||
v2 = abs(c3-c0+c2-c1)*0.26666666666666666
|
||||
v3 = abs(-0.024349751127576*c0 - 0.208983582205757*c1 - 0.325650248872424*c2 + 0.558983582205757*c3)
|
||||
v4 = abs(c3-c2)*.15
|
||||
|
||||
self.value += v0 + v1 + v2 + v3 + v4
|
||||
self.value += approximateCubicArcLengthC(c0, c1, c2, c3)
|
||||
|
||||
def _curveToOne(self, p1, p2, p3):
|
||||
p0 = self._getCurrentPoint()
|
||||
|
Loading…
x
Reference in New Issue
Block a user