Move arc length calculations from pens.perimeterPen to misc.bezierTools

This commit is contained in:
Jens Kutilek 2017-11-14 13:03:58 +01:00
parent 62df8ba108
commit dd558f5df8
2 changed files with 145 additions and 62 deletions

View File

@ -1,10 +1,20 @@
# -*- coding: utf-8 -*-
"""fontTools.misc.bezierTools.py -- tools for working with bezier path segments.
"""
from __future__ import print_function, division, absolute_import
from fontTools.misc.arrayTools import calcBounds
from fontTools.misc.py23 import *
import math
__all__ = [
"approximateCubicArcLength",
"approximateCubicArcLengthC",
"approximateQuadraticArcLength",
"approximateQuadraticArcLengthC",
"calcQuadraticArcLength",
"calcQuadraticArcLengthC",
"calcQuadraticBounds",
"calcCubicBounds",
"splitLine",
@ -16,12 +26,98 @@ __all__ = [
"solveCubic",
]
from fontTools.misc.arrayTools import calcBounds
epsilonDigits = 6
epsilon = 1e-10
def _dot(v1, v2):
return (v1 * v2.conjugate()).real
def _intSecAtan(x):
# In : sympy.integrate(sp.sec(sp.atan(x)))
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2
def calcQuadraticArcLength(pt1, pt2, pt3, approximate_fallback=False):
"""Return the arc length for a qudratic bezier segment.
pt1 and pt3 are the "anchor" points, pt2 is the "handle".
>>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment
0.0
>>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points
80.0
>>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical
80.0
>>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points
107.70329614269008
>>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0))
154.02976155645263
>>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0))
120.21581243984076
>>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50))
102.53273816445825
>>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0), True) # collinear points, control point outside, exact result should be 66.6666666666667
69.41755572720999
>>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0), True) # collinear points, looping back, exact result should be 40
34.4265186329548
"""
return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), approximate_fallback)
def calcQuadraticArcLengthC(pt1, pt2, pt3, approximate_fallback=False):
"""Return the arc length for a qudratic bezier segment using complex points.
pt1 and pt3 are the "anchor" points, pt2 is the "handle"."""
# Analytical solution to the length of a quadratic bezier.
# I'll explain how I arrived at this later.
d0 = pt2 - pt1
d1 = pt3 - pt2
d = d1 - d0
n = d * 1j
scale = abs(n)
if scale == 0.:
return abs(pt3-pt1)
origDist = _dot(n,d0)
if origDist == 0.:
if _dot(d0,d1) >= 0:
return abs(pt3-pt1)
if approximate_fallback:
return approximateQuadraticArcLengthC(pt1, pt2, pt3)
assert 0 # TODO handle cusps
x0 = _dot(d,d0) / origDist
x1 = _dot(d,d1) / origDist
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
return Len
def approximateQuadraticArcLength(pt1, pt2, pt3):
# Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature
# with n=3 points.
return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
def approximateQuadraticArcLengthC(pt1, pt2, pt3):
# Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature
# with n=3 points for complex points.
#
# This, essentially, approximates the length-of-derivative function
# to be integrated with the best-matching fifth-degree polynomial
# approximation of it.
#
#https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
# weighted 5/18, 8/18, 5/18 respectively.
v0 = abs(-0.492943519233745*pt1 + 0.430331482911935*pt2 + 0.0626120363218102*pt3)
v1 = abs(pt3-pt1)*0.4444444444444444
v2 = abs(-0.0626120363218102*pt1 - 0.430331482911935*pt2 + 0.492943519233745*pt3)
return v0 + v1 + v2
def calcQuadraticBounds(pt1, pt2, pt3):
"""Return the bounding rectangle for a qudratic bezier segment.
pt1 and pt3 are the "anchor" points, pt2 is the "handle".
@ -43,6 +139,50 @@ def calcQuadraticBounds(pt1, pt2, pt3):
return calcBounds(points)
def approximateCubicArcLength(pt1, pt2, pt3, pt4):
"""Return the approximate arc length for a cubic bezier segment.
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles".
>>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0))
190.04332968932817
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100))
154.8852074945903
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150.
149.99999999999991
>>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150.
136.9267662156362
>>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp
154.80848416537057
"""
# Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature
# with n=5 points.
return approximateCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4))
def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
"""Return the approximate arc length for a cubic bezier segment of complex points.
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles"."""
# Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature
# with n=5 points for complex points.
#
# This, essentially, approximates the length-of-derivative function
# to be integrated with the best-matching seventh-degree polynomial
# approximation of it.
#
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
v0 = abs(pt2-pt1)*.15
v1 = abs(-0.558983582205757*pt1 + 0.325650248872424*pt2 + 0.208983582205757*pt3 + 0.024349751127576*pt4)
v2 = abs(pt4-pt1+pt3-pt2)*0.26666666666666666
v3 = abs(-0.024349751127576*pt1 - 0.208983582205757*pt2 - 0.325650248872424*pt3 + 0.558983582205757*pt4)
v4 = abs(pt4-pt3)*.15
return v0 + v1 + v2 + v3 + v4
def calcCubicBounds(pt1, pt2, pt3, pt4):
"""Return the bounding rectangle for a cubic bezier segment.
pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles".

View File

@ -4,7 +4,7 @@
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.pens.basePen import BasePen
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT, approximateQuadraticArcLengthC, calcQuadraticArcLengthC, approximateCubicArcLengthC
import math
@ -13,12 +13,6 @@ __all__ = ["PerimeterPen"]
def _distance(p0, p1):
return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
def _dot(v1, v2):
return (v1 * v2.conjugate()).real
def _intSecAtan(x):
# In : sympy.integrate(sp.sec(sp.atan(x)))
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2
def _split_cubic_into_two(p0, p1, p2, p3):
mid = (p0 + 3 * (p1 + p2) + p3) * .125
@ -52,44 +46,10 @@ class PerimeterPen(BasePen):
self.value += _distance(p0, p1)
def _addQuadraticExact(self, c0, c1, c2):
# Analytical solution to the length of a quadratic bezier.
# I'll explain how I arrived at this later.
d0 = c1 - c0
d1 = c2 - c1
d = d1 - d0
n = d * 1j
scale = abs(n)
if scale == 0.:
self.value += abs(c2-c0)
return
origDist = _dot(n,d0)
if origDist == 0.:
if _dot(d0,d1) >= 0:
self.value += abs(c2-c0)
return
assert 0 # TODO handle cusps
x0 = _dot(d,d0) / origDist
x1 = _dot(d,d1) / origDist
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
self.value += Len
self.value += calcQuadraticArcLengthC(c0, c1, c2)
def _addQuadraticQuadrature(self, c0, c1, c2):
# Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature
# with n=3 points.
#
# This, essentially, approximates the length-of-derivative function
# to be integrated with the best-matching fifth-degree polynomial
# approximation of it.
#
#https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
# weighted 5/18, 8/18, 5/18 respectively.
v0 = abs(-0.492943519233745*c0 + 0.430331482911935*c1 + 0.0626120363218102*c2)
v1 = abs(c2-c0)*0.4444444444444444
v2 = abs(-0.0626120363218102*c0 - 0.430331482911935*c1 + 0.492943519233745*c2)
self.value += v0 + v1 + v2
self.value += approximateQuadraticArcLengthC(c0, c1, c2)
def _qCurveToOne(self, p1, p2):
p0 = self._getCurrentPoint()
@ -106,24 +66,7 @@ class PerimeterPen(BasePen):
self._addCubicRecursive(*two)
def _addCubicQuadrature(self, c0, c1, c2, c3):
# Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature
# with n=5 points.
#
# This, essentially, approximates the length-of-derivative function
# to be integrated with the best-matching seventh-degree polynomial
# approximation of it.
#
# https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
v0 = abs(c1-c0)*.15
v1 = abs(-0.558983582205757*c0 + 0.325650248872424*c1 + 0.208983582205757*c2 + 0.024349751127576*c3)
v2 = abs(c3-c0+c2-c1)*0.26666666666666666
v3 = abs(-0.024349751127576*c0 - 0.208983582205757*c1 - 0.325650248872424*c2 + 0.558983582205757*c3)
v4 = abs(c3-c2)*.15
self.value += v0 + v1 + v2 + v3 + v4
self.value += approximateCubicArcLengthC(c0, c1, c2, c3)
def _curveToOne(self, p1, p2, p3):
p0 = self._getCurrentPoint()