[varLib.iup] Document API

This commit is contained in:
Behdad Esfahbod 2022-08-16 13:48:05 -06:00
parent 32904d43bb
commit e494b118c4

View File

@ -1,3 +1,13 @@
from typing import (
Sequence,
Tuple,
Union,
)
from numbers import (
Integral,
Real
)
try: try:
import cython import cython
except ImportError: except ImportError:
@ -12,9 +22,26 @@ else:
COMPILED = False COMPILED = False
_Point = Tuple[Real, Real]
_Delta = Tuple[Real, Real]
_PointSegment = Sequence[_Point]
_DeltaSegment = Sequence[_Delta]
_DeltaOrNone = Union[_Delta, None]
_DeltaOrNoneSegment = Sequence[_DeltaOrNone]
_Endpoints = Sequence[Integral]
MAX_LOOKBACK = 8 MAX_LOOKBACK = 8
def iup_segment(coords, rc1, rd1, rc2, rd2): def iup_segment(coords : _PointSegment,
rc1 : _Point,
rd1 : _Delta,
rc2 : _Point,
rd2 : _Delta) -> _DeltaSegment:
"""Given two reference coordinates `rc1` & `rc2` and their respective
delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of
coordinates `coords`. """
# rc1 = reference coord 1 # rc1 = reference coord 1
# rd1 = reference delta 1 # rd1 = reference delta 1
out_arrays = [None, None] out_arrays = [None, None]
@ -22,7 +49,6 @@ def iup_segment(coords, rc1, rd1, rc2, rd2):
out_arrays[j] = out = [] out_arrays[j] = out = []
x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j] x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]
if x1 == x2: if x1 == x2:
n = len(coords) n = len(coords)
if d1 == d2: if d1 == d2:
@ -52,14 +78,20 @@ def iup_segment(coords, rc1, rd1, rc2, rd2):
return zip(*out_arrays) return zip(*out_arrays)
def iup_contour(delta, coords): def iup_contour(deltas : _DeltaOrNoneSegment,
assert len(delta) == len(coords) coords : _PointSegment) -> _DeltaSegment:
if None not in delta: """For the contour given in `coords`, interpolate any missing
return delta delta values in delta vector `deltas`.
n = len(delta) Returns fully filled-out delta vector."""
assert len(deltas) == len(coords)
if None not in deltas:
return deltas
n = len(deltas)
# indices of points with explicit deltas # indices of points with explicit deltas
indices = [i for i,v in enumerate(delta) if v is not None] indices = [i for i,v in enumerate(deltas) if v is not None]
if not indices: if not indices:
# All deltas are None. Return 0,0 for all. # All deltas are None. Return 0,0 for all.
return [(0,0)]*n return [(0,0)]*n
@ -70,23 +102,31 @@ def iup_contour(delta, coords):
if start != 0: if start != 0:
# Initial segment that wraps around # Initial segment that wraps around
i1, i2, ri1, ri2 = 0, start, start, indices[-1] i1, i2, ri1, ri2 = 0, start, start, indices[-1]
out.extend(iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2])) out.extend(iup_segment(coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]))
out.append(delta[start]) out.append(deltas[start])
for end in it: for end in it:
if end - start > 1: if end - start > 1:
i1, i2, ri1, ri2 = start+1, end, start, end i1, i2, ri1, ri2 = start+1, end, start, end
out.extend(iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2])) out.extend(iup_segment(coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]))
out.append(delta[end]) out.append(deltas[end])
start = end start = end
if start != n-1: if start != n-1:
# Final segment that wraps around # Final segment that wraps around
i1, i2, ri1, ri2 = start+1, n, start, indices[0] i1, i2, ri1, ri2 = start+1, n, start, indices[0]
out.extend(iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2])) out.extend(iup_segment(coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]))
assert len(delta) == len(out), (len(delta), len(out)) assert len(deltas) == len(out), (len(deltas), len(out))
return out return out
def iup_delta(delta, coords, ends): def iup_delta(deltas : _DeltaOrNoneSegment,
coords : _PointSegment,
ends: _Endpoints) -> _DeltaSegment:
"""For the outline given in `coords`, with contour endpoints given
in sorted increasing order in `ends`, interpolate any missing
delta values in delta vector `deltas`.
Returns fully filled-out delta vector."""
assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4 assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4
n = len(coords) n = len(coords)
ends = ends + [n-4, n-3, n-2, n-1] ends = ends + [n-4, n-3, n-2, n-1]
@ -94,7 +134,7 @@ def iup_delta(delta, coords, ends):
start = 0 start = 0
for end in ends: for end in ends:
end += 1 end += 1
contour = iup_contour(delta[start:end], coords[start:end]) contour = iup_contour(deltas[start:end], coords[start:end])
out.extend(contour) out.extend(contour)
start = end start = end
@ -102,7 +142,15 @@ def iup_delta(delta, coords, ends):
# Optimizer # Optimizer
def can_iup_in_between(deltas, coords, i, j, tolerance): def can_iup_in_between(deltas : _DeltaSegment,
coords : _PointSegment,
i : Integral,
j : Integral,
tolerance : Real) -> bool:
"""Return true if the deltas for points at `i` and `j` (`i < j`) can be
successfully used to interpolate deltas for points in between them within
provided error tolerance."""
assert j - i >= 2 assert j - i >= 2
interp = list(iup_segment(coords[i+1:j], coords[i], deltas[i], coords[j], deltas[j])) interp = list(iup_segment(coords[i+1:j], coords[i], deltas[i], coords[j], deltas[j]))
deltas = deltas[i+1:j] deltas = deltas[i+1:j]
@ -111,23 +159,25 @@ def can_iup_in_between(deltas, coords, i, j, tolerance):
return all(abs(complex(x-p, y-q)) <= tolerance for (x,y),(p,q) in zip(deltas, interp)) return all(abs(complex(x-p, y-q)) <= tolerance for (x,y),(p,q) in zip(deltas, interp))
def _iup_contour_bound_forced_set(delta, coords, tolerance=0): def _iup_contour_bound_forced_set(deltas : _DeltaSegment,
coords : _PointSegment,
tolerance : Real = 0) -> set:
"""The forced set is a conservative set of points on the contour that must be encoded """The forced set is a conservative set of points on the contour that must be encoded
explicitly (ie. cannot be interpolated). Calculating this set allows for significantly explicitly (ie. cannot be interpolated). Calculating this set allows for significantly
speeding up the dynamic-programming, as well as resolve circularity in DP. speeding up the dynamic-programming, as well as resolve circularity in DP.
The set is precise; that is, if an index is in the returned set, then there is no way The set is precise; that is, if an index is in the returned set, then there is no way
that IUP can generate delta for that point, given coords and delta. that IUP can generate delta for that point, given `coords` and `deltas`.
""" """
assert len(delta) == len(coords) assert len(deltas) == len(coords)
n = len(delta) n = len(deltas)
forced = set() forced = set()
# Track "last" and "next" points on the contour as we sweep. # Track "last" and "next" points on the contour as we sweep.
for i in range(len(delta)-1, -1, -1): for i in range(len(deltas)-1, -1, -1):
ld, lc = delta[i-1], coords[i-1] ld, lc = deltas[i-1], coords[i-1]
d, c = delta[i], coords[i] d, c = deltas[i], coords[i]
nd, nc = delta[i-n+1], coords[i-n+1] nd, nc = deltas[i-n+1], coords[i-n+1]
for j in (0,1): # For X and for Y for j in (0,1): # For X and for Y
cj = c[j] cj = c[j]
@ -181,7 +231,11 @@ def _iup_contour_bound_forced_set(delta, coords, tolerance=0):
return forced return forced
def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=None): def _iup_contour_optimize_dp(deltas : _DeltaSegment,
coords : _PointSegment,
forced={},
tolerance : Real = 0,
lookback : Integral =None):
"""Straightforward Dynamic-Programming. For each index i, find least-costly encoding of """Straightforward Dynamic-Programming. For each index i, find least-costly encoding of
points 0 to i where i is explicitly encoded. We find this by considering all previous points 0 to i where i is explicitly encoded. We find this by considering all previous
explicit points j and check whether interpolation can fill points between j and i. explicit points j and check whether interpolation can fill points between j and i.
@ -191,7 +245,7 @@ def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=Non
As major speedup, we stop looking further whenever we see a "forced" point.""" As major speedup, we stop looking further whenever we see a "forced" point."""
n = len(delta) n = len(deltas)
if lookback is None: if lookback is None:
lookback = n lookback = n
lookback = min(lookback, MAX_LOOKBACK) lookback = min(lookback, MAX_LOOKBACK)
@ -210,7 +264,7 @@ def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=Non
cost = costs[j] + 1 cost = costs[j] + 1
if cost < best_cost and can_iup_in_between(delta, coords, j, i, tolerance): if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance):
costs[i] = best_cost = cost costs[i] = best_cost = cost
chain[i] = j chain[i] = j
@ -219,7 +273,7 @@ def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=Non
return chain, costs return chain, costs
def _rot_list(l, k): def _rot_list(l : list, k : int):
"""Rotate list by k items forward. Ie. item at position 0 will be """Rotate list by k items forward. Ie. item at position 0 will be
at position k in returned list. Negative k is allowed.""" at position k in returned list. Negative k is allowed."""
n = len(l) n = len(l)
@ -227,32 +281,41 @@ def _rot_list(l, k):
if not k: return l if not k: return l
return l[n-k:] + l[:n-k] return l[n-k:] + l[:n-k]
def _rot_set(s, k, n): def _rot_set(s : set, k : int, n : int):
k %= n k %= n
if not k: return s if not k: return s
return {(v + k) % n for v in s} return {(v + k) % n for v in s}
def iup_contour_optimize(delta, coords, tolerance=0.): def iup_contour_optimize(deltas : _DeltaSegment,
n = len(delta) coords : _PointSegment,
tolerance : Real = 0.) -> _DeltaOrNoneSegment:
"""For contour with coordinates `coords`, optimize a set of delta
values `deltas` within error `tolerance`.
Returns delta vector that has most number of None items instead of
the input delta.
"""
n = len(deltas)
# Get the easy cases out of the way: # Get the easy cases out of the way:
# If all are within tolerance distance of 0, encode nothing: # If all are within tolerance distance of 0, encode nothing:
if all(abs(complex(*p)) <= tolerance for p in delta): if all(abs(complex(*p)) <= tolerance for p in deltas):
return [None] * n return [None] * n
# If there's exactly one point, return it: # If there's exactly one point, return it:
if n == 1: if n == 1:
return delta return deltas
# If all deltas are exactly the same, return just one (the first one): # If all deltas are exactly the same, return just one (the first one):
d0 = delta[0] d0 = deltas[0]
if all(d0 == d for d in delta): if all(d0 == d for d in deltas):
return [d0] + [None] * (n-1) return [d0] + [None] * (n-1)
# Else, solve the general problem using Dynamic Programming. # Else, solve the general problem using Dynamic Programming.
forced = _iup_contour_bound_forced_set(delta, coords, tolerance) forced = _iup_contour_bound_forced_set(deltas, coords, tolerance)
# The _iup_contour_optimize_dp() routine returns the optimal encoding # The _iup_contour_optimize_dp() routine returns the optimal encoding
# solution given the constraint that the last point is always encoded. # solution given the constraint that the last point is always encoded.
# To remove this constraint, we use two different methods, depending on # To remove this constraint, we use two different methods, depending on
@ -267,13 +330,13 @@ def iup_contour_optimize(delta, coords, tolerance=0.):
k = (n-1) - max(forced) k = (n-1) - max(forced)
assert k >= 0 assert k >= 0
delta = _rot_list(delta, k) deltas = _rot_list(deltas, k)
coords = _rot_list(coords, k) coords = _rot_list(coords, k)
forced = _rot_set(forced, k, n) forced = _rot_set(forced, k, n)
# Debugging: Pass a set() instead of forced variable to the next call # Debugging: Pass a set() instead of forced variable to the next call
# to exercise forced-set computation for under-counting. # to exercise forced-set computation for under-counting.
chain, costs = _iup_contour_optimize_dp(delta, coords, forced, tolerance) chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance)
# Assemble solution. # Assemble solution.
solution = set() solution = set()
@ -285,18 +348,18 @@ def iup_contour_optimize(delta, coords, tolerance=0.):
#if not forced <= solution: #if not forced <= solution:
# print("coord", coords) # print("coord", coords)
# print("delta", delta) # print("deltas", deltas)
# print("len", len(delta)) # print("len", len(deltas))
assert forced <= solution, (forced, solution) assert forced <= solution, (forced, solution)
delta = [delta[i] if i in solution else None for i in range(n)] deltas = [deltas[i] if i in solution else None for i in range(n)]
delta = _rot_list(delta, -k) deltas = _rot_list(deltas, -k)
else: else:
# Repeat the contour an extra time, solve the new case, then look for solutions of the # Repeat the contour an extra time, solve the new case, then look for solutions of the
# circular n-length problem in the solution for new linear case. I cannot prove that # circular n-length problem in the solution for new linear case. I cannot prove that
# this always produces the optimal solution... # this always produces the optimal solution...
chain, costs = _iup_contour_optimize_dp(delta+delta, coords+coords, {}, tolerance, n) chain, costs = _iup_contour_optimize_dp(deltas+deltas, coords+coords, forced, tolerance, n)
best_sol, best_cost = None, n+1 best_sol, best_cost = None, n+1
for start in range(n-1, len(costs) - 1): for start in range(n-1, len(costs) - 1):
@ -313,23 +376,33 @@ def iup_contour_optimize(delta, coords, tolerance=0.):
#if not forced <= best_sol: #if not forced <= best_sol:
# print("coord", coords) # print("coord", coords)
# print("delta", delta) # print("deltas", deltas)
# print("len", len(delta)) # print("len", len(deltas))
assert forced <= best_sol, (forced, best_sol) assert forced <= best_sol, (forced, best_sol)
delta = [delta[i] if i in best_sol else None for i in range(n)] deltas = [deltas[i] if i in best_sol else None for i in range(n)]
return delta return deltas
def iup_delta_optimize(delta, coords, ends, tolerance=0.): def iup_delta_optimize(deltas : _DeltaSegment,
coords : _PointSegment,
ends : _Endpoints,
tolerance : Real = 0.) -> _DeltaOrNoneSegment:
"""For the outline given in `coords`, with contour endpoints given
in sorted increasing order in `ends`, optimize a set of delta
values `deltas` within error `tolerance`.
Returns delta vector that has most number of None items instead of
the input delta.
"""
assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4 assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4
n = len(coords) n = len(coords)
ends = ends + [n-4, n-3, n-2, n-1] ends = ends + [n-4, n-3, n-2, n-1]
out = [] out = []
start = 0 start = 0
for end in ends: for end in ends:
contour = iup_contour_optimize(delta[start:end+1], coords[start:end+1], tolerance) contour = iup_contour_optimize(deltas[start:end+1], coords[start:end+1], tolerance)
assert len(contour) == end - start + 1 assert len(contour) == end - start + 1
out.extend(contour) out.extend(contour)
start = end+1 start = end+1