[varLib] Move IUP code into fontTools.varLib.iup
This commit is contained in:
parent
ca7c35900b
commit
f284b733a9
@ -31,6 +31,7 @@ from fontTools.ttLib.tables.TupleVariation import TupleVariation
|
||||
from fontTools.ttLib.tables import otTables as ot
|
||||
from fontTools.varLib import builder, designspace, models
|
||||
from fontTools.varLib.merger import VariationMerger, _all_equal
|
||||
from fontTools.varLib.iup import iup_delta_optimize
|
||||
from collections import OrderedDict
|
||||
import os.path
|
||||
import logging
|
||||
@ -235,221 +236,6 @@ def _SetCoordinates(font, glyphName, coord):
|
||||
# XXX Handle vertical
|
||||
font["hmtx"].metrics[glyphName] = horizontalAdvanceWidth, leftSideBearing
|
||||
|
||||
|
||||
def _all_interpolatable_in_between(deltas, coords, i, j, tolerance):
|
||||
assert j - i >= 2
|
||||
from fontTools.varLib.mutator import _iup_segment
|
||||
interp = list(_iup_segment(coords[i+1:j], coords[i], deltas[i], coords[j], deltas[j]))
|
||||
deltas = deltas[i+1:j]
|
||||
|
||||
assert len(deltas) == len(interp)
|
||||
|
||||
return all(abs(complex(x-p, y-q)) <= tolerance for (x,y),(p,q) in zip(deltas, interp))
|
||||
|
||||
def _iup_contour_bound_forced_set(delta, coords, tolerance=0):
|
||||
"""The forced set is a conservative set of points on the contour that must be encoded
|
||||
explicitly (ie. cannot be interpolated). Calculating this set allows for significantly
|
||||
speeding up the dynamic-programming, as well as resolve circularity in DP.
|
||||
|
||||
The set is precise; that is, if an index is in the returned set, then there is no way
|
||||
that IUP can generate delta for that point, given coords and delta.
|
||||
"""
|
||||
assert len(delta) == len(coords)
|
||||
|
||||
forced = set()
|
||||
# Track "last" and "next" points on the contour as we sweep.
|
||||
nd, nc = delta[0], coords[0]
|
||||
ld, lc = delta[-1], coords[-1]
|
||||
for i in range(len(delta)-1, -1, -1):
|
||||
d, c = ld, lc
|
||||
ld, lc = delta[i-1], coords[i-1]
|
||||
|
||||
for j in (0,1): # For X and for Y
|
||||
cj = c[j]
|
||||
dj = d[j]
|
||||
lcj = lc[j]
|
||||
ldj = ld[j]
|
||||
ncj = nc[j]
|
||||
ndj = nd[j]
|
||||
|
||||
if lcj <= ncj:
|
||||
c1, c2 = lcj, ncj
|
||||
d1, d2 = ldj, ndj
|
||||
else:
|
||||
c1, c2 = ncj, lcj
|
||||
d1, d2 = ndj, ldj
|
||||
|
||||
# If coordinate for current point is between coordinate of adjacent
|
||||
# points on the two sides, but the delta for current point is NOT
|
||||
# between delta for those adjacent points (considering tolerance
|
||||
# allowance), then there is no way that current point can be IUP-ed.
|
||||
# Mark it forced.
|
||||
force = False
|
||||
if c1 <= cj <= c2:
|
||||
if not (min(d1,d2)-tolerance <= dj <= max(d1,d2)+tolerance):
|
||||
force = True
|
||||
else: # cj < c1 or c2 < cj
|
||||
if c1 == c2:
|
||||
if d1 == d2:
|
||||
if abs(dj - d1) > tolerance:
|
||||
force = True
|
||||
else:
|
||||
if abs(dj) > tolerance:
|
||||
# Disabled the following because the "d1 == d2" does
|
||||
# check does not take tolerance into consideration...
|
||||
pass # force = True
|
||||
elif d1 != d2:
|
||||
if cj < c1:
|
||||
if dj != d1 and ((dj-tolerance < d1) != (d1 < d2)):
|
||||
force = True
|
||||
else: # c2 < cj
|
||||
if d2 != dj and ((d2 < dj+tolerance) != (d1 < d2)):
|
||||
force = True
|
||||
|
||||
if force:
|
||||
forced.add(i)
|
||||
break
|
||||
|
||||
nd, nc = d, c
|
||||
|
||||
return forced
|
||||
|
||||
def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=None):
|
||||
"""Straightforward Dynamic-Programming. For each index i, find least-costly encoding of
|
||||
points i to n-1 where i is explicitly encoded. We find this by considering all next
|
||||
explicit points j and check whether interpolation can fill points between i and j.
|
||||
|
||||
Note that solution always encodes last point explicitly. Higher-level is responsible
|
||||
for removing that restriction.
|
||||
|
||||
As major speedup, we stop looking further whenever we see a "forced" point."""
|
||||
|
||||
n = len(delta)
|
||||
if lookback is None:
|
||||
lookback = n
|
||||
costs = {-1:0}
|
||||
chain = {-1:None}
|
||||
for i in range(0, n):
|
||||
best_cost = costs[i-1] + 1
|
||||
|
||||
costs[i] = best_cost
|
||||
chain[i] = i - 1
|
||||
|
||||
if i - 1 in forced:
|
||||
continue
|
||||
|
||||
for j in range(i-2, max(i-lookback, -2), -1):
|
||||
|
||||
cost = costs[j] + 1
|
||||
|
||||
if cost < best_cost and _all_interpolatable_in_between(delta, coords, j, i, tolerance):
|
||||
costs[i] = best_cost = cost
|
||||
chain[i] = j
|
||||
|
||||
if j in forced:
|
||||
break
|
||||
|
||||
return chain, costs
|
||||
|
||||
def _rot_list(l, k):
|
||||
"""Rotate list by k items forward. Ie. item at position 0 will be
|
||||
at position k in returned list. Negative k is allowed."""
|
||||
n = len(l)
|
||||
k %= n
|
||||
if not k: return l
|
||||
return l[n-k:] + l[:n-k]
|
||||
|
||||
def _rot_set(s, k, n):
|
||||
k %= n
|
||||
if not k: return s
|
||||
return {(v + k) % n for v in s}
|
||||
|
||||
def _iup_contour_optimize(delta, coords, tolerance=0.):
|
||||
n = len(delta)
|
||||
|
||||
# Get the easy cases out of the way:
|
||||
|
||||
# If all are within tolerance distance of 0, encode nothing:
|
||||
if all(abs(complex(*p)) <= tolerance for p in delta):
|
||||
return [None] * n
|
||||
|
||||
# If there's exactly one point, return it:
|
||||
if n == 1:
|
||||
return delta
|
||||
|
||||
# If all deltas are exactly the same, return just one (the first one):
|
||||
d0 = delta[0]
|
||||
if all(d0 == d for d in delta):
|
||||
return [d0] + [None] * (n-1)
|
||||
|
||||
# Else, solve the general problem using Dynamic Programming.
|
||||
|
||||
forced = _iup_contour_bound_forced_set(delta, coords, tolerance)
|
||||
# The _iup_contour_optimize_dp() routine returns the optimal encoding
|
||||
# solution given the constraint that the last point is always encoded.
|
||||
# To remove this constraint, we use two different methods, depending on
|
||||
# whether forced set is non-empty or not:
|
||||
|
||||
if forced:
|
||||
# Forced set is non-empty: rotate the contour start point
|
||||
# such that the last point in the list is a forced point.
|
||||
k = (n-1) - max(forced)
|
||||
assert k >= 0
|
||||
|
||||
delta = _rot_list(delta, k)
|
||||
coords = _rot_list(coords, k)
|
||||
forced = _rot_set(forced, k, n)
|
||||
|
||||
chain, costs = _iup_contour_optimize_dp(delta, coords, forced, tolerance)
|
||||
|
||||
# Assemble solution.
|
||||
solution = set()
|
||||
i = n - 1
|
||||
while i is not None:
|
||||
solution.add(i)
|
||||
i = chain[i]
|
||||
assert forced <= solution, (forced, solution)
|
||||
delta = [delta[i] if i in solution else None for i in range(n)]
|
||||
|
||||
delta = _rot_list(delta, -k)
|
||||
else:
|
||||
# Repeat the contour an extra time, solve the 2*n case, then look for solutions of the
|
||||
# circular n-length problem in the solution for 2*n linear case. I cannot prove that
|
||||
# this always produces the optimal solution...
|
||||
chain, costs = _iup_contour_optimize_dp(delta+delta, coords+coords, forced, tolerance, n)
|
||||
best_sol, best_cost = None, n+1
|
||||
|
||||
for start in range(n-1, 2*n-1):
|
||||
# Assemble solution.
|
||||
solution = set()
|
||||
i = start
|
||||
while i > start - n:
|
||||
solution.add(i % n)
|
||||
i = chain[i]
|
||||
if i == start - n:
|
||||
cost = costs[start] - costs[start - n]
|
||||
if cost <= best_cost:
|
||||
best_sol, best_cost = solution, cost
|
||||
|
||||
delta = [delta[i] if i in best_sol else None for i in range(n)]
|
||||
|
||||
|
||||
return delta
|
||||
|
||||
def _iup_delta_optimize(delta, coords, ends, tolerance=0.):
|
||||
assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4
|
||||
n = len(coords)
|
||||
ends = ends + [n-4, n-3, n-2, n-1]
|
||||
out = []
|
||||
start = 0
|
||||
for end in ends:
|
||||
contour = _iup_contour_optimize(delta[start:end+1], coords[start:end+1], tolerance)
|
||||
assert len(contour) == end - start + 1
|
||||
out.extend(contour)
|
||||
start = end+1
|
||||
|
||||
return out
|
||||
|
||||
def _add_gvar(font, model, master_ttfs, tolerance=0.5, optimize=True):
|
||||
|
||||
assert tolerance >= 0
|
||||
@ -487,7 +273,7 @@ def _add_gvar(font, model, master_ttfs, tolerance=0.5, optimize=True):
|
||||
continue
|
||||
var = TupleVariation(support, delta)
|
||||
if optimize:
|
||||
delta_opt = _iup_delta_optimize(delta, origCoords, endPts, tolerance=tolerance)
|
||||
delta_opt = iup_delta_optimize(delta, origCoords, endPts, tolerance=tolerance)
|
||||
|
||||
if None in delta_opt:
|
||||
# Use "optimized" version only if smaller...
|
||||
|
305
Lib/fontTools/varLib/iup.py
Normal file
305
Lib/fontTools/varLib/iup.py
Normal file
@ -0,0 +1,305 @@
|
||||
from __future__ import print_function, division, absolute_import
|
||||
from __future__ import unicode_literals
|
||||
from fontTools.misc.py23 import *
|
||||
|
||||
|
||||
def iup_segment(coords, rc1, rd1, rc2, rd2):
|
||||
# rc1 = reference coord 1
|
||||
# rd1 = reference delta 1
|
||||
out_arrays = [None, None]
|
||||
for j in 0,1:
|
||||
out_arrays[j] = out = []
|
||||
x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]
|
||||
|
||||
|
||||
if x1 == x2:
|
||||
n = len(coords)
|
||||
if d1 == d2:
|
||||
out.extend([d1]*n)
|
||||
else:
|
||||
out.extend([0]*n)
|
||||
continue
|
||||
|
||||
if x1 > x2:
|
||||
x1, x2 = x2, x1
|
||||
d1, d2 = d2, d1
|
||||
|
||||
# x1 < x2
|
||||
scale = (d2 - d1) / (x2 - x1)
|
||||
for pair in coords:
|
||||
x = pair[j]
|
||||
|
||||
if x <= x1:
|
||||
d = d1
|
||||
elif x >= x2:
|
||||
d = d2
|
||||
else:
|
||||
# Interpolate
|
||||
d = d1 + (x - x1) * scale
|
||||
|
||||
out.append(d)
|
||||
|
||||
return zip(*out_arrays)
|
||||
|
||||
def iup_contour(delta, coords):
|
||||
assert len(delta) == len(coords)
|
||||
if None not in delta:
|
||||
return delta
|
||||
|
||||
n = len(delta)
|
||||
# indices of points with explicit deltas
|
||||
indices = [i for i,v in enumerate(delta) if v is not None]
|
||||
if not indices:
|
||||
# All deltas are None. Return 0,0 for all.
|
||||
return [(0,0)]*n
|
||||
|
||||
out = []
|
||||
it = iter(indices)
|
||||
start = next(it)
|
||||
if start != 0:
|
||||
# Initial segment that wraps around
|
||||
i1, i2, ri1, ri2 = 0, start, start, indices[-1]
|
||||
out.extend(iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2]))
|
||||
out.append(delta[start])
|
||||
for end in it:
|
||||
if end - start > 1:
|
||||
i1, i2, ri1, ri2 = start+1, end, start, end
|
||||
out.extend(iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2]))
|
||||
out.append(delta[end])
|
||||
start = end
|
||||
if start != n-1:
|
||||
# Final segment that wraps around
|
||||
i1, i2, ri1, ri2 = start+1, n, start, indices[0]
|
||||
out.extend(iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2]))
|
||||
|
||||
assert len(delta) == len(out), (len(delta), len(out))
|
||||
return out
|
||||
|
||||
def iup_delta(delta, coords, ends):
|
||||
assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4
|
||||
n = len(coords)
|
||||
ends = ends + [n-4, n-3, n-2, n-1]
|
||||
out = []
|
||||
start = 0
|
||||
for end in ends:
|
||||
end += 1
|
||||
contour = iup_contour(delta[start:end], coords[start:end])
|
||||
out.extend(contour)
|
||||
start = end
|
||||
|
||||
return out
|
||||
|
||||
# Optimizer
|
||||
|
||||
def can_iup_in_between(deltas, coords, i, j, tolerance):
|
||||
assert j - i >= 2
|
||||
interp = list(iup_segment(coords[i+1:j], coords[i], deltas[i], coords[j], deltas[j]))
|
||||
deltas = deltas[i+1:j]
|
||||
|
||||
assert len(deltas) == len(interp)
|
||||
|
||||
return all(abs(complex(x-p, y-q)) <= tolerance for (x,y),(p,q) in zip(deltas, interp))
|
||||
|
||||
def _iup_contour_bound_forced_set(delta, coords, tolerance=0):
|
||||
"""The forced set is a conservative set of points on the contour that must be encoded
|
||||
explicitly (ie. cannot be interpolated). Calculating this set allows for significantly
|
||||
speeding up the dynamic-programming, as well as resolve circularity in DP.
|
||||
|
||||
The set is precise; that is, if an index is in the returned set, then there is no way
|
||||
that IUP can generate delta for that point, given coords and delta.
|
||||
"""
|
||||
assert len(delta) == len(coords)
|
||||
|
||||
forced = set()
|
||||
# Track "last" and "next" points on the contour as we sweep.
|
||||
nd, nc = delta[0], coords[0]
|
||||
ld, lc = delta[-1], coords[-1]
|
||||
for i in range(len(delta)-1, -1, -1):
|
||||
d, c = ld, lc
|
||||
ld, lc = delta[i-1], coords[i-1]
|
||||
|
||||
for j in (0,1): # For X and for Y
|
||||
cj = c[j]
|
||||
dj = d[j]
|
||||
lcj = lc[j]
|
||||
ldj = ld[j]
|
||||
ncj = nc[j]
|
||||
ndj = nd[j]
|
||||
|
||||
if lcj <= ncj:
|
||||
c1, c2 = lcj, ncj
|
||||
d1, d2 = ldj, ndj
|
||||
else:
|
||||
c1, c2 = ncj, lcj
|
||||
d1, d2 = ndj, ldj
|
||||
|
||||
# If coordinate for current point is between coordinate of adjacent
|
||||
# points on the two sides, but the delta for current point is NOT
|
||||
# between delta for those adjacent points (considering tolerance
|
||||
# allowance), then there is no way that current point can be IUP-ed.
|
||||
# Mark it forced.
|
||||
force = False
|
||||
if c1 <= cj <= c2:
|
||||
if not (min(d1,d2)-tolerance <= dj <= max(d1,d2)+tolerance):
|
||||
force = True
|
||||
else: # cj < c1 or c2 < cj
|
||||
if c1 == c2:
|
||||
if d1 == d2:
|
||||
if abs(dj - d1) > tolerance:
|
||||
force = True
|
||||
else:
|
||||
if abs(dj) > tolerance:
|
||||
# Disabled the following because the "d1 == d2" does
|
||||
# check does not take tolerance into consideration...
|
||||
pass # force = True
|
||||
elif d1 != d2:
|
||||
if cj < c1:
|
||||
if dj != d1 and ((dj-tolerance < d1) != (d1 < d2)):
|
||||
force = True
|
||||
else: # c2 < cj
|
||||
if d2 != dj and ((d2 < dj+tolerance) != (d1 < d2)):
|
||||
force = True
|
||||
|
||||
if force:
|
||||
forced.add(i)
|
||||
break
|
||||
|
||||
nd, nc = d, c
|
||||
|
||||
return forced
|
||||
|
||||
def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=None):
|
||||
"""Straightforward Dynamic-Programming. For each index i, find least-costly encoding of
|
||||
points i to n-1 where i is explicitly encoded. We find this by considering all next
|
||||
explicit points j and check whether interpolation can fill points between i and j.
|
||||
|
||||
Note that solution always encodes last point explicitly. Higher-level is responsible
|
||||
for removing that restriction.
|
||||
|
||||
As major speedup, we stop looking further whenever we see a "forced" point."""
|
||||
|
||||
n = len(delta)
|
||||
if lookback is None:
|
||||
lookback = n
|
||||
costs = {-1:0}
|
||||
chain = {-1:None}
|
||||
for i in range(0, n):
|
||||
best_cost = costs[i-1] + 1
|
||||
|
||||
costs[i] = best_cost
|
||||
chain[i] = i - 1
|
||||
|
||||
if i - 1 in forced:
|
||||
continue
|
||||
|
||||
for j in range(i-2, max(i-lookback, -2), -1):
|
||||
|
||||
cost = costs[j] + 1
|
||||
|
||||
if cost < best_cost and can_iup_in_between(delta, coords, j, i, tolerance):
|
||||
costs[i] = best_cost = cost
|
||||
chain[i] = j
|
||||
|
||||
if j in forced:
|
||||
break
|
||||
|
||||
return chain, costs
|
||||
|
||||
def _rot_list(l, k):
|
||||
"""Rotate list by k items forward. Ie. item at position 0 will be
|
||||
at position k in returned list. Negative k is allowed."""
|
||||
n = len(l)
|
||||
k %= n
|
||||
if not k: return l
|
||||
return l[n-k:] + l[:n-k]
|
||||
|
||||
def _rot_set(s, k, n):
|
||||
k %= n
|
||||
if not k: return s
|
||||
return {(v + k) % n for v in s}
|
||||
|
||||
def iup_contour_optimize(delta, coords, tolerance=0.):
|
||||
n = len(delta)
|
||||
|
||||
# Get the easy cases out of the way:
|
||||
|
||||
# If all are within tolerance distance of 0, encode nothing:
|
||||
if all(abs(complex(*p)) <= tolerance for p in delta):
|
||||
return [None] * n
|
||||
|
||||
# If there's exactly one point, return it:
|
||||
if n == 1:
|
||||
return delta
|
||||
|
||||
# If all deltas are exactly the same, return just one (the first one):
|
||||
d0 = delta[0]
|
||||
if all(d0 == d for d in delta):
|
||||
return [d0] + [None] * (n-1)
|
||||
|
||||
# Else, solve the general problem using Dynamic Programming.
|
||||
|
||||
forced = _iup_contour_bound_forced_set(delta, coords, tolerance)
|
||||
# The _iup_contour_optimize_dp() routine returns the optimal encoding
|
||||
# solution given the constraint that the last point is always encoded.
|
||||
# To remove this constraint, we use two different methods, depending on
|
||||
# whether forced set is non-empty or not:
|
||||
|
||||
if forced:
|
||||
# Forced set is non-empty: rotate the contour start point
|
||||
# such that the last point in the list is a forced point.
|
||||
k = (n-1) - max(forced)
|
||||
assert k >= 0
|
||||
|
||||
delta = _rot_list(delta, k)
|
||||
coords = _rot_list(coords, k)
|
||||
forced = _rot_set(forced, k, n)
|
||||
|
||||
chain, costs = _iup_contour_optimize_dp(delta, coords, forced, tolerance)
|
||||
|
||||
# Assemble solution.
|
||||
solution = set()
|
||||
i = n - 1
|
||||
while i is not None:
|
||||
solution.add(i)
|
||||
i = chain[i]
|
||||
assert forced <= solution, (forced, solution)
|
||||
delta = [delta[i] if i in solution else None for i in range(n)]
|
||||
|
||||
delta = _rot_list(delta, -k)
|
||||
else:
|
||||
# Repeat the contour an extra time, solve the 2*n case, then look for solutions of the
|
||||
# circular n-length problem in the solution for 2*n linear case. I cannot prove that
|
||||
# this always produces the optimal solution...
|
||||
chain, costs = _iup_contour_optimize_dp(delta+delta, coords+coords, forced, tolerance, n)
|
||||
best_sol, best_cost = None, n+1
|
||||
|
||||
for start in range(n-1, 2*n-1):
|
||||
# Assemble solution.
|
||||
solution = set()
|
||||
i = start
|
||||
while i > start - n:
|
||||
solution.add(i % n)
|
||||
i = chain[i]
|
||||
if i == start - n:
|
||||
cost = costs[start] - costs[start - n]
|
||||
if cost <= best_cost:
|
||||
best_sol, best_cost = solution, cost
|
||||
|
||||
delta = [delta[i] if i in best_sol else None for i in range(n)]
|
||||
|
||||
|
||||
return delta
|
||||
|
||||
def iup_delta_optimize(delta, coords, ends, tolerance=0.):
|
||||
assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4
|
||||
n = len(coords)
|
||||
ends = ends + [n-4, n-3, n-2, n-1]
|
||||
out = []
|
||||
start = 0
|
||||
for end in ends:
|
||||
contour = iup_contour_optimize(delta[start:end+1], coords[start:end+1], tolerance)
|
||||
assert len(contour) == end - start + 1
|
||||
out.extend(contour)
|
||||
start = end+1
|
||||
|
||||
return out
|
@ -9,6 +9,7 @@ from fontTools.ttLib import TTFont
|
||||
from fontTools.ttLib.tables._g_l_y_f import GlyphCoordinates
|
||||
from fontTools.varLib import _GetCoordinates, _SetCoordinates
|
||||
from fontTools.varLib.models import supportScalar, normalizeLocation
|
||||
from fontTools.varLib.iup import iup_delta
|
||||
import os.path
|
||||
import logging
|
||||
|
||||
@ -16,91 +17,6 @@ import logging
|
||||
log = logging.getLogger("fontTools.varlib.mutator")
|
||||
|
||||
|
||||
def _iup_segment(coords, rc1, rd1, rc2, rd2):
|
||||
# rc1 = reference coord 1
|
||||
# rd1 = reference delta 1
|
||||
out_arrays = [None, None]
|
||||
for j in 0,1:
|
||||
out_arrays[j] = out = []
|
||||
x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]
|
||||
|
||||
|
||||
if x1 == x2:
|
||||
n = len(coords)
|
||||
if d1 == d2:
|
||||
out.extend([d1]*n)
|
||||
else:
|
||||
out.extend([0]*n)
|
||||
continue
|
||||
|
||||
if x1 > x2:
|
||||
x1, x2 = x2, x1
|
||||
d1, d2 = d2, d1
|
||||
|
||||
# x1 < x2
|
||||
scale = (d2 - d1) / (x2 - x1)
|
||||
for pair in coords:
|
||||
x = pair[j]
|
||||
|
||||
if x <= x1:
|
||||
d = d1
|
||||
elif x >= x2:
|
||||
d = d2
|
||||
else:
|
||||
# Interpolate
|
||||
d = d1 + (x - x1) * scale
|
||||
|
||||
out.append(d)
|
||||
|
||||
return zip(*out_arrays)
|
||||
|
||||
def _iup_contour(delta, coords):
|
||||
assert len(delta) == len(coords)
|
||||
if None not in delta:
|
||||
return delta
|
||||
|
||||
n = len(delta)
|
||||
# indices of points with explicit deltas
|
||||
indices = [i for i,v in enumerate(delta) if v is not None]
|
||||
if not indices:
|
||||
# All deltas are None. Return 0,0 for all.
|
||||
return [(0,0)]*n
|
||||
|
||||
out = []
|
||||
it = iter(indices)
|
||||
start = next(it)
|
||||
if start != 0:
|
||||
# Initial segment that wraps around
|
||||
i1, i2, ri1, ri2 = 0, start, start, indices[-1]
|
||||
out.extend(_iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2]))
|
||||
out.append(delta[start])
|
||||
for end in it:
|
||||
if end - start > 1:
|
||||
i1, i2, ri1, ri2 = start+1, end, start, end
|
||||
out.extend(_iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2]))
|
||||
out.append(delta[end])
|
||||
start = end
|
||||
if start != n-1:
|
||||
# Final segment that wraps around
|
||||
i1, i2, ri1, ri2 = start+1, n, start, indices[0]
|
||||
out.extend(_iup_segment(coords[i1:i2], coords[ri1], delta[ri1], coords[ri2], delta[ri2]))
|
||||
|
||||
assert len(delta) == len(out), (len(delta), len(out))
|
||||
return out
|
||||
|
||||
def _iup_delta(delta, coords, ends):
|
||||
assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4
|
||||
n = len(coords)
|
||||
ends = ends + [n-4, n-3, n-2, n-1]
|
||||
out = []
|
||||
start = 0
|
||||
for end in ends:
|
||||
end += 1
|
||||
contour = _iup_contour(delta[start:end], coords[start:end])
|
||||
out.extend(contour)
|
||||
start = end
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def instantiateVariableFont(varfont, location, inplace=False):
|
||||
@ -149,7 +65,7 @@ def instantiateVariableFont(varfont, location, inplace=False):
|
||||
if origCoords is None:
|
||||
origCoords,control = _GetCoordinates(varfont, glyphname)
|
||||
endPts = control[1] if control[0] >= 1 else list(range(len(control[1])))
|
||||
delta = _iup_delta(delta, origCoords, endPts)
|
||||
delta = iup_delta(delta, origCoords, endPts)
|
||||
coordinates += GlyphCoordinates(delta) * scalar
|
||||
_SetCoordinates(varfont, glyphname, coordinates)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user