Merge pull request #2192 from simoncozens/beziertools-intersections

Add intersections and point-at-time functions to bezierTools
This commit is contained in:
Simon Cozens 2021-02-26 15:59:05 +00:00 committed by GitHub
commit f49ad5a9ad
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 549 additions and 95 deletions

View File

@ -228,6 +228,19 @@ def rectCenter(rect):
(xMin, yMin, xMax, yMax) = rect (xMin, yMin, xMax, yMax) = rect
return (xMin+xMax)/2, (yMin+yMax)/2 return (xMin+xMax)/2, (yMin+yMax)/2
def rectArea(rect):
"""Determine rectangle area.
Args:
rect: Bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
Returns:
The area of the rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return (yMax - yMin) * (xMax - xMin)
def intRect(rect): def intRect(rect):
"""Round a rectangle to integer values. """Round a rectangle to integer values.

View File

@ -2,9 +2,13 @@
"""fontTools.misc.bezierTools.py -- tools for working with Bezier path segments. """fontTools.misc.bezierTools.py -- tools for working with Bezier path segments.
""" """
from fontTools.misc.arrayTools import calcBounds from fontTools.misc.arrayTools import calcBounds, sectRect, rectArea
from fontTools.misc.transform import Offset, Identity
from fontTools.misc.py23 import * from fontTools.misc.py23 import *
import math import math
from collections import namedtuple
Intersection = namedtuple("Intersection", ["pt", "t1", "t2"])
__all__ = [ __all__ = [
@ -25,6 +29,14 @@ __all__ = [
"splitCubicAtT", "splitCubicAtT",
"solveQuadratic", "solveQuadratic",
"solveCubic", "solveCubic",
"quadraticPointAtT",
"cubicPointAtT",
"linePointAtT",
"segmentPointAtT",
"lineLineIntersections",
"curveLineIntersections",
"curveCurveIntersections",
"segmentSegmentIntersections",
] ]
@ -42,23 +54,31 @@ def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005):
Returns: Returns:
Arc length value. Arc length value.
""" """
return calcCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance) return calcCubicArcLengthC(
complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance
)
def _split_cubic_into_two(p0, p1, p2, p3): def _split_cubic_into_two(p0, p1, p2, p3):
mid = (p0 + 3 * (p1 + p2) + p3) * .125 mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
deriv3 = (p3 + p2 - p1 - p0) * .125 deriv3 = (p3 + p2 - p1 - p0) * 0.125
return ((p0, (p0 + p1) * .5, mid - deriv3, mid), return (
(mid, mid + deriv3, (p2 + p3) * .5, p3)) (p0, (p0 + p1) * 0.5, mid - deriv3, mid),
(mid, mid + deriv3, (p2 + p3) * 0.5, p3),
)
def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3): def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3):
arch = abs(p0-p3) arch = abs(p0 - p3)
box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3) box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3)
if arch * mult >= box: if arch * mult >= box:
return (arch + box) * .5 return (arch + box) * 0.5
else: else:
one,two = _split_cubic_into_two(p0,p1,p2,p3) one, two = _split_cubic_into_two(p0, p1, p2, p3)
return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(mult, *two) return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(
mult, *two
)
def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005): def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
"""Calculates the arc length for a cubic Bezier segment. """Calculates the arc length for a cubic Bezier segment.
@ -70,7 +90,7 @@ def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
Returns: Returns:
Arc length value. Arc length value.
""" """
mult = 1. + 1.5 * tolerance # The 1.5 is a empirical hack; no math mult = 1.0 + 1.5 * tolerance # The 1.5 is a empirical hack; no math
return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4) return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4)
@ -85,7 +105,7 @@ def _dot(v1, v2):
def _intSecAtan(x): def _intSecAtan(x):
# In : sympy.integrate(sp.sec(sp.atan(x))) # In : sympy.integrate(sp.sec(sp.atan(x)))
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2 # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2 return x * math.sqrt(x ** 2 + 1) / 2 + math.asinh(x) / 2
def calcQuadraticArcLength(pt1, pt2, pt3): def calcQuadraticArcLength(pt1, pt2, pt3):
@ -141,16 +161,16 @@ def calcQuadraticArcLengthC(pt1, pt2, pt3):
d = d1 - d0 d = d1 - d0
n = d * 1j n = d * 1j
scale = abs(n) scale = abs(n)
if scale == 0.: if scale == 0.0:
return abs(pt3-pt1) return abs(pt3 - pt1)
origDist = _dot(n,d0) origDist = _dot(n, d0)
if abs(origDist) < epsilon: if abs(origDist) < epsilon:
if _dot(d0,d1) >= 0: if _dot(d0, d1) >= 0:
return abs(pt3-pt1) return abs(pt3 - pt1)
a, b = abs(d0), abs(d1) a, b = abs(d0), abs(d1)
return (a*a + b*b) / (a+b) return (a * a + b * b) / (a + b)
x0 = _dot(d,d0) / origDist x0 = _dot(d, d0) / origDist
x1 = _dot(d,d1) / origDist x1 = _dot(d, d1) / origDist
Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0))) Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0)))
return Len return Len
@ -190,13 +210,17 @@ def approximateQuadraticArcLengthC(pt1, pt2, pt3):
# to be integrated with the best-matching fifth-degree polynomial # to be integrated with the best-matching fifth-degree polynomial
# approximation of it. # approximation of it.
# #
#https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2), # abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
# weighted 5/18, 8/18, 5/18 respectively. # weighted 5/18, 8/18, 5/18 respectively.
v0 = abs(-0.492943519233745*pt1 + 0.430331482911935*pt2 + 0.0626120363218102*pt3) v0 = abs(
v1 = abs(pt3-pt1)*0.4444444444444444 -0.492943519233745 * pt1 + 0.430331482911935 * pt2 + 0.0626120363218102 * pt3
v2 = abs(-0.0626120363218102*pt1 - 0.430331482911935*pt2 + 0.492943519233745*pt3) )
v1 = abs(pt3 - pt1) * 0.4444444444444444
v2 = abs(
-0.0626120363218102 * pt1 - 0.430331482911935 * pt2 + 0.492943519233745 * pt3
)
return v0 + v1 + v2 return v0 + v1 + v2
@ -220,14 +244,18 @@ def calcQuadraticBounds(pt1, pt2, pt3):
(0.0, 0.0, 100, 100) (0.0, 0.0, 100, 100)
""" """
(ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3) (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3)
ax2 = ax*2.0 ax2 = ax * 2.0
ay2 = ay*2.0 ay2 = ay * 2.0
roots = [] roots = []
if ax2 != 0: if ax2 != 0:
roots.append(-bx/ax2) roots.append(-bx / ax2)
if ay2 != 0: if ay2 != 0:
roots.append(-by/ay2) roots.append(-by / ay2)
points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] points = [
(ax * t * t + bx * t + cx, ay * t * t + by * t + cy)
for t in roots
if 0 <= t < 1
] + [pt1, pt3]
return calcBounds(points) return calcBounds(points)
@ -256,7 +284,9 @@ def approximateCubicArcLength(pt1, pt2, pt3, pt4):
>>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp >>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp
154.80848416537057 154.80848416537057
""" """
return approximateCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4)) return approximateCubicArcLengthC(
complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4)
)
def approximateCubicArcLengthC(pt1, pt2, pt3, pt4): def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
@ -276,11 +306,21 @@ def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1), # abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively. # weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
v0 = abs(pt2-pt1)*.15 v0 = abs(pt2 - pt1) * 0.15
v1 = abs(-0.558983582205757*pt1 + 0.325650248872424*pt2 + 0.208983582205757*pt3 + 0.024349751127576*pt4) v1 = abs(
v2 = abs(pt4-pt1+pt3-pt2)*0.26666666666666666 -0.558983582205757 * pt1
v3 = abs(-0.024349751127576*pt1 - 0.208983582205757*pt2 - 0.325650248872424*pt3 + 0.558983582205757*pt4) + 0.325650248872424 * pt2
v4 = abs(pt4-pt3)*.15 + 0.208983582205757 * pt3
+ 0.024349751127576 * pt4
)
v2 = abs(pt4 - pt1 + pt3 - pt2) * 0.26666666666666666
v3 = abs(
-0.024349751127576 * pt1
- 0.208983582205757 * pt2
- 0.325650248872424 * pt3
+ 0.558983582205757 * pt4
)
v4 = abs(pt4 - pt3) * 0.15
return v0 + v1 + v2 + v3 + v4 return v0 + v1 + v2 + v3 + v4
@ -313,7 +353,13 @@ def calcCubicBounds(pt1, pt2, pt3, pt4):
yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1] yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1]
roots = xRoots + yRoots roots = xRoots + yRoots
points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4] points = [
(
ax * t * t * t + bx * t * t + cx * t + dx,
ay * t * t * t + by * t * t + cy * t + dy,
)
for t in roots
] + [pt1, pt4]
return calcBounds(points) return calcBounds(points)
@ -356,8 +402,8 @@ def splitLine(pt1, pt2, where, isHorizontal):
pt1x, pt1y = pt1 pt1x, pt1y = pt1
pt2x, pt2y = pt2 pt2x, pt2y = pt2
ax = (pt2x - pt1x) ax = pt2x - pt1x
ay = (pt2y - pt1y) ay = pt2y - pt1y
bx = pt1x bx = pt1x
by = pt1y by = pt1y
@ -410,8 +456,9 @@ def splitQuadratic(pt1, pt2, pt3, where, isHorizontal):
((50, 50), (75, 50), (100, 0)) ((50, 50), (75, 50), (100, 0))
""" """
a, b, c = calcQuadraticParameters(pt1, pt2, pt3) a, b, c = calcQuadraticParameters(pt1, pt2, pt3)
solutions = solveQuadratic(a[isHorizontal], b[isHorizontal], solutions = solveQuadratic(
c[isHorizontal] - where) a[isHorizontal], b[isHorizontal], c[isHorizontal] - where
)
solutions = sorted([t for t in solutions if 0 <= t < 1]) solutions = sorted([t for t in solutions if 0 <= t < 1])
if not solutions: if not solutions:
return [(pt1, pt2, pt3)] return [(pt1, pt2, pt3)]
@ -446,8 +493,9 @@ def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal):
((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15)) ((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15))
""" """
a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4)
solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal], solutions = solveCubic(
d[isHorizontal] - where) a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where
)
solutions = sorted([t for t in solutions if 0 <= t < 1]) solutions = sorted([t for t in solutions if 0 <= t < 1])
if not solutions: if not solutions:
return [(pt1, pt2, pt3, pt4)] return [(pt1, pt2, pt3, pt4)]
@ -512,17 +560,17 @@ def _splitQuadraticAtT(a, b, c, *ts):
cx, cy = c cx, cy = c
for i in range(len(ts) - 1): for i in range(len(ts) - 1):
t1 = ts[i] t1 = ts[i]
t2 = ts[i+1] t2 = ts[i + 1]
delta = (t2 - t1) delta = t2 - t1
# calc new a, b and c # calc new a, b and c
delta_2 = delta*delta delta_2 = delta * delta
a1x = ax * delta_2 a1x = ax * delta_2
a1y = ay * delta_2 a1y = ay * delta_2
b1x = (2*ax*t1 + bx) * delta b1x = (2 * ax * t1 + bx) * delta
b1y = (2*ay*t1 + by) * delta b1y = (2 * ay * t1 + by) * delta
t1_2 = t1*t1 t1_2 = t1 * t1
c1x = ax*t1_2 + bx*t1 + cx c1x = ax * t1_2 + bx * t1 + cx
c1y = ay*t1_2 + by*t1 + cy c1y = ay * t1_2 + by * t1 + cy
pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y)) pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y))
segments.append((pt1, pt2, pt3)) segments.append((pt1, pt2, pt3))
@ -540,24 +588,26 @@ def _splitCubicAtT(a, b, c, d, *ts):
dx, dy = d dx, dy = d
for i in range(len(ts) - 1): for i in range(len(ts) - 1):
t1 = ts[i] t1 = ts[i]
t2 = ts[i+1] t2 = ts[i + 1]
delta = (t2 - t1) delta = t2 - t1
delta_2 = delta*delta delta_2 = delta * delta
delta_3 = delta*delta_2 delta_3 = delta * delta_2
t1_2 = t1*t1 t1_2 = t1 * t1
t1_3 = t1*t1_2 t1_3 = t1 * t1_2
# calc new a, b, c and d # calc new a, b, c and d
a1x = ax * delta_3 a1x = ax * delta_3
a1y = ay * delta_3 a1y = ay * delta_3
b1x = (3*ax*t1 + bx) * delta_2 b1x = (3 * ax * t1 + bx) * delta_2
b1y = (3*ay*t1 + by) * delta_2 b1y = (3 * ay * t1 + by) * delta_2
c1x = (2*bx*t1 + cx + 3*ax*t1_2) * delta c1x = (2 * bx * t1 + cx + 3 * ax * t1_2) * delta
c1y = (2*by*t1 + cy + 3*ay*t1_2) * delta c1y = (2 * by * t1 + cy + 3 * ay * t1_2) * delta
d1x = ax*t1_3 + bx*t1_2 + cx*t1 + dx d1x = ax * t1_3 + bx * t1_2 + cx * t1 + dx
d1y = ay*t1_3 + by*t1_2 + cy*t1 + dy d1y = ay * t1_3 + by * t1_2 + cy * t1 + dy
pt1, pt2, pt3, pt4 = calcCubicPoints((a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)) pt1, pt2, pt3, pt4 = calcCubicPoints(
(a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)
)
segments.append((pt1, pt2, pt3, pt4)) segments.append((pt1, pt2, pt3, pt4))
return segments return segments
@ -569,8 +619,7 @@ def _splitCubicAtT(a, b, c, d, *ts):
from math import sqrt, acos, cos, pi from math import sqrt, acos, cos, pi
def solveQuadratic(a, b, c, def solveQuadratic(a, b, c, sqrt=sqrt):
sqrt=sqrt):
"""Solve a quadratic equation. """Solve a quadratic equation.
Solves *a*x*x + b*x + c = 0* where a, b and c are real. Solves *a*x*x + b*x + c = 0* where a, b and c are real.
@ -590,13 +639,13 @@ def solveQuadratic(a, b, c,
roots = [] roots = []
else: else:
# We have a linear equation with 1 root. # We have a linear equation with 1 root.
roots = [-c/b] roots = [-c / b]
else: else:
# We have a true quadratic equation. Apply the quadratic formula to find two roots. # We have a true quadratic equation. Apply the quadratic formula to find two roots.
DD = b*b - 4.0*a*c DD = b * b - 4.0 * a * c
if DD >= 0.0: if DD >= 0.0:
rDD = sqrt(DD) rDD = sqrt(DD)
roots = [(-b+rDD)/2.0/a, (-b-rDD)/2.0/a] roots = [(-b + rDD) / 2.0 / a, (-b - rDD) / 2.0 / a]
else: else:
# complex roots, ignore # complex roots, ignore
roots = [] roots = []
@ -646,52 +695,52 @@ def solveCubic(a, b, c, d):
# returns unreliable results, so we fall back to quad. # returns unreliable results, so we fall back to quad.
return solveQuadratic(b, c, d) return solveQuadratic(b, c, d)
a = float(a) a = float(a)
a1 = b/a a1 = b / a
a2 = c/a a2 = c / a
a3 = d/a a3 = d / a
Q = (a1*a1 - 3.0*a2)/9.0 Q = (a1 * a1 - 3.0 * a2) / 9.0
R = (2.0*a1*a1*a1 - 9.0*a1*a2 + 27.0*a3)/54.0 R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0
R2 = R*R R2 = R * R
Q3 = Q*Q*Q Q3 = Q * Q * Q
R2 = 0 if R2 < epsilon else R2 R2 = 0 if R2 < epsilon else R2
Q3 = 0 if abs(Q3) < epsilon else Q3 Q3 = 0 if abs(Q3) < epsilon else Q3
R2_Q3 = R2 - Q3 R2_Q3 = R2 - Q3
if R2 == 0. and Q3 == 0.: if R2 == 0.0 and Q3 == 0.0:
x = round(-a1/3.0, epsilonDigits) x = round(-a1 / 3.0, epsilonDigits)
return [x, x, x] return [x, x, x]
elif R2_Q3 <= epsilon * .5: elif R2_Q3 <= epsilon * 0.5:
# The epsilon * .5 above ensures that Q3 is not zero. # The epsilon * .5 above ensures that Q3 is not zero.
theta = acos(max(min(R/sqrt(Q3), 1.0), -1.0)) theta = acos(max(min(R / sqrt(Q3), 1.0), -1.0))
rQ2 = -2.0*sqrt(Q) rQ2 = -2.0 * sqrt(Q)
a1_3 = a1/3.0 a1_3 = a1 / 3.0
x0 = rQ2*cos(theta/3.0) - a1_3 x0 = rQ2 * cos(theta / 3.0) - a1_3
x1 = rQ2*cos((theta+2.0*pi)/3.0) - a1_3 x1 = rQ2 * cos((theta + 2.0 * pi) / 3.0) - a1_3
x2 = rQ2*cos((theta+4.0*pi)/3.0) - a1_3 x2 = rQ2 * cos((theta + 4.0 * pi) / 3.0) - a1_3
x0, x1, x2 = sorted([x0, x1, x2]) x0, x1, x2 = sorted([x0, x1, x2])
# Merge roots that are close-enough # Merge roots that are close-enough
if x1 - x0 < epsilon and x2 - x1 < epsilon: if x1 - x0 < epsilon and x2 - x1 < epsilon:
x0 = x1 = x2 = round((x0 + x1 + x2) / 3., epsilonDigits) x0 = x1 = x2 = round((x0 + x1 + x2) / 3.0, epsilonDigits)
elif x1 - x0 < epsilon: elif x1 - x0 < epsilon:
x0 = x1 = round((x0 + x1) / 2., epsilonDigits) x0 = x1 = round((x0 + x1) / 2.0, epsilonDigits)
x2 = round(x2, epsilonDigits) x2 = round(x2, epsilonDigits)
elif x2 - x1 < epsilon: elif x2 - x1 < epsilon:
x0 = round(x0, epsilonDigits) x0 = round(x0, epsilonDigits)
x1 = x2 = round((x1 + x2) / 2., epsilonDigits) x1 = x2 = round((x1 + x2) / 2.0, epsilonDigits)
else: else:
x0 = round(x0, epsilonDigits) x0 = round(x0, epsilonDigits)
x1 = round(x1, epsilonDigits) x1 = round(x1, epsilonDigits)
x2 = round(x2, epsilonDigits) x2 = round(x2, epsilonDigits)
return [x0, x1, x2] return [x0, x1, x2]
else: else:
x = pow(sqrt(R2_Q3)+abs(R), 1/3.0) x = pow(sqrt(R2_Q3) + abs(R), 1 / 3.0)
x = x + Q/x x = x + Q / x
if R >= 0.0: if R >= 0.0:
x = -x x = -x
x = round(x - a1/3.0, epsilonDigits) x = round(x - a1 / 3.0, epsilonDigits)
return [x] return [x]
@ -699,6 +748,7 @@ def solveCubic(a, b, c, d):
# Conversion routines for points to parameters and vice versa # Conversion routines for points to parameters and vice versa
# #
def calcQuadraticParameters(pt1, pt2, pt3): def calcQuadraticParameters(pt1, pt2, pt3):
x2, y2 = pt2 x2, y2 = pt2
x3, y3 = pt3 x3, y3 = pt3
@ -753,10 +803,399 @@ def calcCubicPoints(a, b, c, d):
return (x1, y1), (x2, y2), (x3, y3), (x4, y4) return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
#
# Point at time
#
def linePointAtT(pt1, pt2, t):
"""Finds the point at time `t` on a line.
Args:
pt1, pt2: Coordinates of the line as 2D tuples.
t: The time along the line.
Returns:
A 2D tuple with the coordinates of the point.
"""
return ((pt1[0] * (1 - t) + pt2[0] * t), (pt1[1] * (1 - t) + pt2[1] * t))
def quadraticPointAtT(pt1, pt2, pt3, t):
"""Finds the point at time `t` on a quadratic curve.
Args:
pt1, pt2, pt3: Coordinates of the curve as 2D tuples.
t: The time along the curve.
Returns:
A 2D tuple with the coordinates of the point.
"""
x = (1 - t) * (1 - t) * pt1[0] + 2 * (1 - t) * t * pt2[0] + t * t * pt3[0]
y = (1 - t) * (1 - t) * pt1[1] + 2 * (1 - t) * t * pt2[1] + t * t * pt3[1]
return (x, y)
def cubicPointAtT(pt1, pt2, pt3, pt4, t):
"""Finds the point at time `t` on a cubic curve.
Args:
pt1, pt2, pt3, pt4: Coordinates of the curve as 2D tuples.
t: The time along the curve.
Returns:
A 2D tuple with the coordinates of the point.
"""
x = (
(1 - t) * (1 - t) * (1 - t) * pt1[0]
+ 3 * (1 - t) * (1 - t) * t * pt2[0]
+ 3 * (1 - t) * t * t * pt3[0]
+ t * t * t * pt4[0]
)
y = (
(1 - t) * (1 - t) * (1 - t) * pt1[1]
+ 3 * (1 - t) * (1 - t) * t * pt2[1]
+ 3 * (1 - t) * t * t * pt3[1]
+ t * t * t * pt4[1]
)
return (x, y)
def segmentPointAtT(seg, t):
if len(seg) == 2:
return linePointAtT(*seg, t)
elif len(seg) == 3:
return quadraticPointAtT(*seg, t)
elif len(seg) == 4:
return cubicPointAtT(*seg, t)
raise ValueError("Unknown curve degree")
#
# Intersection finders
#
def _line_t_of_pt(s, e, pt):
sx, sy = s
ex, ey = e
px, py = pt
if not math.isclose(sx, ex):
return (px - sx) / (ex - sx)
if not math.isclose(sy, ey):
return (py - sy) / (ey - sy)
# Line is a point!
return -1
def _both_points_are_on_same_side_of_origin(a, b, origin):
xDiff = (a[0] - origin[0]) * (b[0] - origin[0])
yDiff = (a[1] - origin[1]) * (b[1] - origin[1])
return not (xDiff <= 0.0 and yDiff <= 0.0)
def lineLineIntersections(s1, e1, s2, e2):
"""Finds intersections between two line segments.
Args:
s1, e1: Coordinates of the first line as 2D tuples.
s2, e2: Coordinates of the second line as 2D tuples.
Returns:
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
and ``t2`` attributes containing the intersection point, time on first
segment and time on second segment respectively.
Examples::
>>> a = lineLineIntersections( (310,389), (453, 222), (289, 251), (447, 367))
>>> len(a)
1
>>> intersection = a[0]
>>> intersection.pt
(374.44882952482897, 313.73458370177315)
>>> (intersection.t1, intersection.t2)
(0.45069111555824454, 0.5408153767394238)
"""
s1x, s1y = s1
e1x, e1y = e1
s2x, s2y = s2
e2x, e2y = e2
if (
math.isclose(s2x, e2x) and math.isclose(s1x, e1x) and not math.isclose(s1x, s2x)
): # Parallel vertical
return []
if (
math.isclose(s2y, e2y) and math.isclose(s1y, e1y) and not math.isclose(s1y, s2y)
): # Parallel horizontal
return []
if math.isclose(s2x, e2x) and math.isclose(s2y, e2y): # Line segment is tiny
return []
if math.isclose(s1x, e1x) and math.isclose(s1y, e1y): # Line segment is tiny
return []
if math.isclose(e1x, s1x):
x = s1x
slope34 = (e2y - s2y) / (e2x - s2x)
y = slope34 * (x - s2x) + s2y
pt = (x, y)
return [
Intersection(
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
)
]
if math.isclose(s2x, e2x):
x = s2x
slope12 = (e1y - s1y) / (e1x - s1x)
y = slope12 * (x - s1x) + s1y
pt = (x, y)
return [
Intersection(
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
)
]
slope12 = (e1y - s1y) / (e1x - s1x)
slope34 = (e2y - s2y) / (e2x - s2x)
if math.isclose(slope12, slope34):
return []
x = (slope12 * s1x - s1y - slope34 * s2x + s2y) / (slope12 - slope34)
y = slope12 * (x - s1x) + s1y
pt = (x, y)
if _both_points_are_on_same_side_of_origin(
pt, e1, s1
) and _both_points_are_on_same_side_of_origin(pt, s2, e2):
return [
Intersection(
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
)
]
return []
def _alignment_transformation(segment):
# Returns a transformation which aligns a segment horizontally at the
# origin. Apply this transformation to curves and root-find to find
# intersections with the segment.
start = segment[0]
end = segment[-1]
angle = math.atan2(end[1] - start[1], end[0] - start[0])
return Identity.rotate(-angle).translate(-start[0], -start[1])
def _curve_line_intersections_t(curve, line):
aligned_curve = _alignment_transformation(line).transformPoints(curve)
if len(curve) == 3:
a, b, c = calcQuadraticParameters(*aligned_curve)
intersections = solveQuadratic(a[1], b[1], c[1])
elif len(curve) == 4:
a, b, c, d = calcCubicParameters(*aligned_curve)
intersections = solveCubic(a[1], b[1], c[1], d[1])
else:
raise ValueError("Unknown curve degree")
return sorted([i for i in intersections if 0.0 <= i <= 1])
def curveLineIntersections(curve, line):
"""Finds intersections between a curve and a line.
Args:
curve: List of coordinates of the curve segment as 2D tuples.
line: List of coordinates of the line segment as 2D tuples.
Returns:
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
and ``t2`` attributes containing the intersection point, time on first
segment and time on second segment respectively.
Examples::
>>> curve = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
>>> line = [ (25, 260), (230, 20) ]
>>> intersections = curveLineIntersections(curve, line)
>>> len(intersections)
3
>>> intersections[0].pt
(84.90010344084885, 189.87306176459828)
"""
if len(curve) == 3:
pointFinder = quadraticPointAtT
elif len(curve) == 4:
pointFinder = cubicPointAtT
else:
raise ValueError("Unknown curve degree")
intersections = []
for t in _curve_line_intersections_t(curve, line):
pt = pointFinder(*curve, t)
intersections.append(Intersection(pt=pt, t1=t, t2=_line_t_of_pt(*line, pt)))
return intersections
def _curve_bounds(c):
if len(c) == 3:
return calcQuadraticBounds(*c)
elif len(c) == 4:
return calcCubicBounds(*c)
raise ValueError("Unknown curve degree")
def _split_segment_at_t(c, t):
if len(c) == 2:
s, e = c
midpoint = linePointAtT(s, e, t)
return [(s, midpoint), (midpoint, e)]
if len(c) == 3:
return splitQuadraticAtT(*c, t)
elif len(c) == 4:
return splitCubicAtT(*c, t)
raise ValueError("Unknown curve degree")
def _curve_curve_intersections_t(
curve1, curve2, precision=1e-3, range1=None, range2=None
):
bounds1 = _curve_bounds(curve1)
bounds2 = _curve_bounds(curve2)
if not range1:
range1 = (0.0, 1.0)
if not range2:
range2 = (0.0, 1.0)
# If bounds don't intersect, go home
intersects, _ = sectRect(bounds1, bounds2)
if not intersects:
return []
def midpoint(r):
return 0.5 * (r[0] + r[1])
# If they do overlap but they're tiny, approximate
if rectArea(bounds1) < precision and rectArea(bounds2) < precision:
return [(midpoint(range1), midpoint(range2))]
c11, c12 = _split_segment_at_t(curve1, 0.5)
c11_range = (range1[0], midpoint(range1))
c12_range = (midpoint(range1), range1[1])
c21, c22 = _split_segment_at_t(curve2, 0.5)
c21_range = (range2[0], midpoint(range2))
c22_range = (midpoint(range2), range2[1])
found = []
found.extend(
_curve_curve_intersections_t(
c11, c21, precision, range1=c11_range, range2=c21_range
)
)
found.extend(
_curve_curve_intersections_t(
c12, c21, precision, range1=c12_range, range2=c21_range
)
)
found.extend(
_curve_curve_intersections_t(
c11, c22, precision, range1=c11_range, range2=c22_range
)
)
found.extend(
_curve_curve_intersections_t(
c12, c22, precision, range1=c12_range, range2=c22_range
)
)
unique_key = lambda ts: (int(ts[0] / precision), int(ts[1] / precision))
seen = set()
unique_values = []
for ts in found:
key = unique_key(ts)
if key in seen:
continue
seen.add(key)
unique_values.append(ts)
return unique_values
def curveCurveIntersections(curve1, curve2):
"""Finds intersections between a curve and a curve.
Args:
curve1: List of coordinates of the first curve segment as 2D tuples.
curve2: List of coordinates of the second curve segment as 2D tuples.
Returns:
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
and ``t2`` attributes containing the intersection point, time on first
segment and time on second segment respectively.
Examples::
>>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
>>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
>>> intersections = curveCurveIntersections(curve1, curve2)
>>> len(intersections)
3
>>> intersections[0].pt
(81.7831487395506, 109.88904552375288)
"""
intersection_ts = _curve_curve_intersections_t(curve1, curve2)
return [
Intersection(pt=segmentPointAtT(curve1, ts[0]), t1=ts[0], t2=ts[1])
for ts in intersection_ts
]
def segmentSegmentIntersections(seg1, seg2):
"""Finds intersections between two segments.
Args:
seg1: List of coordinates of the first segment as 2D tuples.
seg2: List of coordinates of the second segment as 2D tuples.
Returns:
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
and ``t2`` attributes containing the intersection point, time on first
segment and time on second segment respectively.
Examples::
>>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
>>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
>>> intersections = segmentSegmentIntersections(curve1, curve2)
>>> len(intersections)
3
>>> intersections[0].pt
(81.7831487395506, 109.88904552375288)
>>> curve3 = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
>>> line = [ (25, 260), (230, 20) ]
>>> intersections = segmentSegmentIntersections(curve3, line)
>>> len(intersections)
3
>>> intersections[0].pt
(84.90010344084885, 189.87306176459828)
"""
# Arrange by degree
swapped = False
if len(seg2) > len(seg1):
seg2, seg1 = seg1, seg2
swapped = True
if len(seg1) > 2:
if len(seg2) > 2:
intersections = curveCurveIntersections(seg1, seg2)
else:
intersections = curveLineIntersections(seg1, seg2)
elif len(seg1) == 2 and len(seg2) == 2:
intersections = lineLineIntersections(*seg1, *seg2)
else:
raise ValueError("Couldn't work out which intersection function to use")
if not swapped:
return intersections
return [Intersection(pt=i.pt, t1=i.t2, t2=i.t1) for i in intersections]
def _segmentrepr(obj): def _segmentrepr(obj):
""" """
>>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]]) >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]])
'(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))' '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))'
""" """
try: try:
it = iter(obj) it = iter(obj)
@ -773,7 +1212,9 @@ def printSegments(segments):
for segment in segments: for segment in segments:
print(_segmentrepr(segment)) print(_segmentrepr(segment))
if __name__ == "__main__": if __name__ == "__main__":
import sys import sys
import doctest import doctest
sys.exit(doctest.testmod().failed) sys.exit(doctest.testmod().failed)