Merge pull request #2192 from simoncozens/beziertools-intersections
Add intersections and point-at-time functions to bezierTools
This commit is contained in:
commit
f49ad5a9ad
@ -228,6 +228,19 @@ def rectCenter(rect):
|
||||
(xMin, yMin, xMax, yMax) = rect
|
||||
return (xMin+xMax)/2, (yMin+yMax)/2
|
||||
|
||||
def rectArea(rect):
|
||||
"""Determine rectangle area.
|
||||
|
||||
Args:
|
||||
rect: Bounding rectangle, expressed as tuples
|
||||
``(xMin, yMin, xMax, yMax)``.
|
||||
|
||||
Returns:
|
||||
The area of the rectangle.
|
||||
"""
|
||||
(xMin, yMin, xMax, yMax) = rect
|
||||
return (yMax - yMin) * (xMax - xMin)
|
||||
|
||||
def intRect(rect):
|
||||
"""Round a rectangle to integer values.
|
||||
|
||||
|
@ -2,9 +2,13 @@
|
||||
"""fontTools.misc.bezierTools.py -- tools for working with Bezier path segments.
|
||||
"""
|
||||
|
||||
from fontTools.misc.arrayTools import calcBounds
|
||||
from fontTools.misc.arrayTools import calcBounds, sectRect, rectArea
|
||||
from fontTools.misc.transform import Offset, Identity
|
||||
from fontTools.misc.py23 import *
|
||||
import math
|
||||
from collections import namedtuple
|
||||
|
||||
Intersection = namedtuple("Intersection", ["pt", "t1", "t2"])
|
||||
|
||||
|
||||
__all__ = [
|
||||
@ -25,6 +29,14 @@ __all__ = [
|
||||
"splitCubicAtT",
|
||||
"solveQuadratic",
|
||||
"solveCubic",
|
||||
"quadraticPointAtT",
|
||||
"cubicPointAtT",
|
||||
"linePointAtT",
|
||||
"segmentPointAtT",
|
||||
"lineLineIntersections",
|
||||
"curveLineIntersections",
|
||||
"curveCurveIntersections",
|
||||
"segmentSegmentIntersections",
|
||||
]
|
||||
|
||||
|
||||
@ -42,23 +54,31 @@ def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005):
|
||||
Returns:
|
||||
Arc length value.
|
||||
"""
|
||||
return calcCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance)
|
||||
return calcCubicArcLengthC(
|
||||
complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance
|
||||
)
|
||||
|
||||
|
||||
def _split_cubic_into_two(p0, p1, p2, p3):
|
||||
mid = (p0 + 3 * (p1 + p2) + p3) * .125
|
||||
deriv3 = (p3 + p2 - p1 - p0) * .125
|
||||
return ((p0, (p0 + p1) * .5, mid - deriv3, mid),
|
||||
(mid, mid + deriv3, (p2 + p3) * .5, p3))
|
||||
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
|
||||
deriv3 = (p3 + p2 - p1 - p0) * 0.125
|
||||
return (
|
||||
(p0, (p0 + p1) * 0.5, mid - deriv3, mid),
|
||||
(mid, mid + deriv3, (p2 + p3) * 0.5, p3),
|
||||
)
|
||||
|
||||
|
||||
def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3):
|
||||
arch = abs(p0 - p3)
|
||||
box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3)
|
||||
if arch * mult >= box:
|
||||
return (arch + box) * .5
|
||||
return (arch + box) * 0.5
|
||||
else:
|
||||
one, two = _split_cubic_into_two(p0, p1, p2, p3)
|
||||
return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(mult, *two)
|
||||
return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(
|
||||
mult, *two
|
||||
)
|
||||
|
||||
|
||||
def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
|
||||
"""Calculates the arc length for a cubic Bezier segment.
|
||||
@ -70,7 +90,7 @@ def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
|
||||
Returns:
|
||||
Arc length value.
|
||||
"""
|
||||
mult = 1. + 1.5 * tolerance # The 1.5 is a empirical hack; no math
|
||||
mult = 1.0 + 1.5 * tolerance # The 1.5 is a empirical hack; no math
|
||||
return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4)
|
||||
|
||||
|
||||
@ -141,7 +161,7 @@ def calcQuadraticArcLengthC(pt1, pt2, pt3):
|
||||
d = d1 - d0
|
||||
n = d * 1j
|
||||
scale = abs(n)
|
||||
if scale == 0.:
|
||||
if scale == 0.0:
|
||||
return abs(pt3 - pt1)
|
||||
origDist = _dot(n, d0)
|
||||
if abs(origDist) < epsilon:
|
||||
@ -194,9 +214,13 @@ def approximateQuadraticArcLengthC(pt1, pt2, pt3):
|
||||
|
||||
# abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2),
|
||||
# weighted 5/18, 8/18, 5/18 respectively.
|
||||
v0 = abs(-0.492943519233745*pt1 + 0.430331482911935*pt2 + 0.0626120363218102*pt3)
|
||||
v0 = abs(
|
||||
-0.492943519233745 * pt1 + 0.430331482911935 * pt2 + 0.0626120363218102 * pt3
|
||||
)
|
||||
v1 = abs(pt3 - pt1) * 0.4444444444444444
|
||||
v2 = abs(-0.0626120363218102*pt1 - 0.430331482911935*pt2 + 0.492943519233745*pt3)
|
||||
v2 = abs(
|
||||
-0.0626120363218102 * pt1 - 0.430331482911935 * pt2 + 0.492943519233745 * pt3
|
||||
)
|
||||
|
||||
return v0 + v1 + v2
|
||||
|
||||
@ -227,7 +251,11 @@ def calcQuadraticBounds(pt1, pt2, pt3):
|
||||
roots.append(-bx / ax2)
|
||||
if ay2 != 0:
|
||||
roots.append(-by / ay2)
|
||||
points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3]
|
||||
points = [
|
||||
(ax * t * t + bx * t + cx, ay * t * t + by * t + cy)
|
||||
for t in roots
|
||||
if 0 <= t < 1
|
||||
] + [pt1, pt3]
|
||||
return calcBounds(points)
|
||||
|
||||
|
||||
@ -256,7 +284,9 @@ def approximateCubicArcLength(pt1, pt2, pt3, pt4):
|
||||
>>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp
|
||||
154.80848416537057
|
||||
"""
|
||||
return approximateCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4))
|
||||
return approximateCubicArcLengthC(
|
||||
complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4)
|
||||
)
|
||||
|
||||
|
||||
def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
|
||||
@ -276,11 +306,21 @@ def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
|
||||
|
||||
# abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1),
|
||||
# weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively.
|
||||
v0 = abs(pt2-pt1)*.15
|
||||
v1 = abs(-0.558983582205757*pt1 + 0.325650248872424*pt2 + 0.208983582205757*pt3 + 0.024349751127576*pt4)
|
||||
v0 = abs(pt2 - pt1) * 0.15
|
||||
v1 = abs(
|
||||
-0.558983582205757 * pt1
|
||||
+ 0.325650248872424 * pt2
|
||||
+ 0.208983582205757 * pt3
|
||||
+ 0.024349751127576 * pt4
|
||||
)
|
||||
v2 = abs(pt4 - pt1 + pt3 - pt2) * 0.26666666666666666
|
||||
v3 = abs(-0.024349751127576*pt1 - 0.208983582205757*pt2 - 0.325650248872424*pt3 + 0.558983582205757*pt4)
|
||||
v4 = abs(pt4-pt3)*.15
|
||||
v3 = abs(
|
||||
-0.024349751127576 * pt1
|
||||
- 0.208983582205757 * pt2
|
||||
- 0.325650248872424 * pt3
|
||||
+ 0.558983582205757 * pt4
|
||||
)
|
||||
v4 = abs(pt4 - pt3) * 0.15
|
||||
|
||||
return v0 + v1 + v2 + v3 + v4
|
||||
|
||||
@ -313,7 +353,13 @@ def calcCubicBounds(pt1, pt2, pt3, pt4):
|
||||
yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1]
|
||||
roots = xRoots + yRoots
|
||||
|
||||
points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4]
|
||||
points = [
|
||||
(
|
||||
ax * t * t * t + bx * t * t + cx * t + dx,
|
||||
ay * t * t * t + by * t * t + cy * t + dy,
|
||||
)
|
||||
for t in roots
|
||||
] + [pt1, pt4]
|
||||
return calcBounds(points)
|
||||
|
||||
|
||||
@ -356,8 +402,8 @@ def splitLine(pt1, pt2, where, isHorizontal):
|
||||
pt1x, pt1y = pt1
|
||||
pt2x, pt2y = pt2
|
||||
|
||||
ax = (pt2x - pt1x)
|
||||
ay = (pt2y - pt1y)
|
||||
ax = pt2x - pt1x
|
||||
ay = pt2y - pt1y
|
||||
|
||||
bx = pt1x
|
||||
by = pt1y
|
||||
@ -410,8 +456,9 @@ def splitQuadratic(pt1, pt2, pt3, where, isHorizontal):
|
||||
((50, 50), (75, 50), (100, 0))
|
||||
"""
|
||||
a, b, c = calcQuadraticParameters(pt1, pt2, pt3)
|
||||
solutions = solveQuadratic(a[isHorizontal], b[isHorizontal],
|
||||
c[isHorizontal] - where)
|
||||
solutions = solveQuadratic(
|
||||
a[isHorizontal], b[isHorizontal], c[isHorizontal] - where
|
||||
)
|
||||
solutions = sorted([t for t in solutions if 0 <= t < 1])
|
||||
if not solutions:
|
||||
return [(pt1, pt2, pt3)]
|
||||
@ -446,8 +493,9 @@ def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal):
|
||||
((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15))
|
||||
"""
|
||||
a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4)
|
||||
solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal],
|
||||
d[isHorizontal] - where)
|
||||
solutions = solveCubic(
|
||||
a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where
|
||||
)
|
||||
solutions = sorted([t for t in solutions if 0 <= t < 1])
|
||||
if not solutions:
|
||||
return [(pt1, pt2, pt3, pt4)]
|
||||
@ -513,7 +561,7 @@ def _splitQuadraticAtT(a, b, c, *ts):
|
||||
for i in range(len(ts) - 1):
|
||||
t1 = ts[i]
|
||||
t2 = ts[i + 1]
|
||||
delta = (t2 - t1)
|
||||
delta = t2 - t1
|
||||
# calc new a, b and c
|
||||
delta_2 = delta * delta
|
||||
a1x = ax * delta_2
|
||||
@ -541,7 +589,7 @@ def _splitCubicAtT(a, b, c, d, *ts):
|
||||
for i in range(len(ts) - 1):
|
||||
t1 = ts[i]
|
||||
t2 = ts[i + 1]
|
||||
delta = (t2 - t1)
|
||||
delta = t2 - t1
|
||||
|
||||
delta_2 = delta * delta
|
||||
delta_3 = delta * delta_2
|
||||
@ -557,7 +605,9 @@ def _splitCubicAtT(a, b, c, d, *ts):
|
||||
c1y = (2 * by * t1 + cy + 3 * ay * t1_2) * delta
|
||||
d1x = ax * t1_3 + bx * t1_2 + cx * t1 + dx
|
||||
d1y = ay * t1_3 + by * t1_2 + cy * t1 + dy
|
||||
pt1, pt2, pt3, pt4 = calcCubicPoints((a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y))
|
||||
pt1, pt2, pt3, pt4 = calcCubicPoints(
|
||||
(a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)
|
||||
)
|
||||
segments.append((pt1, pt2, pt3, pt4))
|
||||
return segments
|
||||
|
||||
@ -569,8 +619,7 @@ def _splitCubicAtT(a, b, c, d, *ts):
|
||||
from math import sqrt, acos, cos, pi
|
||||
|
||||
|
||||
def solveQuadratic(a, b, c,
|
||||
sqrt=sqrt):
|
||||
def solveQuadratic(a, b, c, sqrt=sqrt):
|
||||
"""Solve a quadratic equation.
|
||||
|
||||
Solves *a*x*x + b*x + c = 0* where a, b and c are real.
|
||||
@ -660,10 +709,10 @@ def solveCubic(a, b, c, d):
|
||||
|
||||
R2_Q3 = R2 - Q3
|
||||
|
||||
if R2 == 0. and Q3 == 0.:
|
||||
if R2 == 0.0 and Q3 == 0.0:
|
||||
x = round(-a1 / 3.0, epsilonDigits)
|
||||
return [x, x, x]
|
||||
elif R2_Q3 <= epsilon * .5:
|
||||
elif R2_Q3 <= epsilon * 0.5:
|
||||
# The epsilon * .5 above ensures that Q3 is not zero.
|
||||
theta = acos(max(min(R / sqrt(Q3), 1.0), -1.0))
|
||||
rQ2 = -2.0 * sqrt(Q)
|
||||
@ -674,13 +723,13 @@ def solveCubic(a, b, c, d):
|
||||
x0, x1, x2 = sorted([x0, x1, x2])
|
||||
# Merge roots that are close-enough
|
||||
if x1 - x0 < epsilon and x2 - x1 < epsilon:
|
||||
x0 = x1 = x2 = round((x0 + x1 + x2) / 3., epsilonDigits)
|
||||
x0 = x1 = x2 = round((x0 + x1 + x2) / 3.0, epsilonDigits)
|
||||
elif x1 - x0 < epsilon:
|
||||
x0 = x1 = round((x0 + x1) / 2., epsilonDigits)
|
||||
x0 = x1 = round((x0 + x1) / 2.0, epsilonDigits)
|
||||
x2 = round(x2, epsilonDigits)
|
||||
elif x2 - x1 < epsilon:
|
||||
x0 = round(x0, epsilonDigits)
|
||||
x1 = x2 = round((x1 + x2) / 2., epsilonDigits)
|
||||
x1 = x2 = round((x1 + x2) / 2.0, epsilonDigits)
|
||||
else:
|
||||
x0 = round(x0, epsilonDigits)
|
||||
x1 = round(x1, epsilonDigits)
|
||||
@ -699,6 +748,7 @@ def solveCubic(a, b, c, d):
|
||||
# Conversion routines for points to parameters and vice versa
|
||||
#
|
||||
|
||||
|
||||
def calcQuadraticParameters(pt1, pt2, pt3):
|
||||
x2, y2 = pt2
|
||||
x3, y3 = pt3
|
||||
@ -753,6 +803,395 @@ def calcCubicPoints(a, b, c, d):
|
||||
return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
|
||||
|
||||
|
||||
#
|
||||
# Point at time
|
||||
#
|
||||
|
||||
|
||||
def linePointAtT(pt1, pt2, t):
|
||||
"""Finds the point at time `t` on a line.
|
||||
|
||||
Args:
|
||||
pt1, pt2: Coordinates of the line as 2D tuples.
|
||||
t: The time along the line.
|
||||
|
||||
Returns:
|
||||
A 2D tuple with the coordinates of the point.
|
||||
"""
|
||||
return ((pt1[0] * (1 - t) + pt2[0] * t), (pt1[1] * (1 - t) + pt2[1] * t))
|
||||
|
||||
|
||||
def quadraticPointAtT(pt1, pt2, pt3, t):
|
||||
"""Finds the point at time `t` on a quadratic curve.
|
||||
|
||||
Args:
|
||||
pt1, pt2, pt3: Coordinates of the curve as 2D tuples.
|
||||
t: The time along the curve.
|
||||
|
||||
Returns:
|
||||
A 2D tuple with the coordinates of the point.
|
||||
"""
|
||||
x = (1 - t) * (1 - t) * pt1[0] + 2 * (1 - t) * t * pt2[0] + t * t * pt3[0]
|
||||
y = (1 - t) * (1 - t) * pt1[1] + 2 * (1 - t) * t * pt2[1] + t * t * pt3[1]
|
||||
return (x, y)
|
||||
|
||||
|
||||
def cubicPointAtT(pt1, pt2, pt3, pt4, t):
|
||||
"""Finds the point at time `t` on a cubic curve.
|
||||
|
||||
Args:
|
||||
pt1, pt2, pt3, pt4: Coordinates of the curve as 2D tuples.
|
||||
t: The time along the curve.
|
||||
|
||||
Returns:
|
||||
A 2D tuple with the coordinates of the point.
|
||||
"""
|
||||
x = (
|
||||
(1 - t) * (1 - t) * (1 - t) * pt1[0]
|
||||
+ 3 * (1 - t) * (1 - t) * t * pt2[0]
|
||||
+ 3 * (1 - t) * t * t * pt3[0]
|
||||
+ t * t * t * pt4[0]
|
||||
)
|
||||
y = (
|
||||
(1 - t) * (1 - t) * (1 - t) * pt1[1]
|
||||
+ 3 * (1 - t) * (1 - t) * t * pt2[1]
|
||||
+ 3 * (1 - t) * t * t * pt3[1]
|
||||
+ t * t * t * pt4[1]
|
||||
)
|
||||
return (x, y)
|
||||
|
||||
|
||||
def segmentPointAtT(seg, t):
|
||||
if len(seg) == 2:
|
||||
return linePointAtT(*seg, t)
|
||||
elif len(seg) == 3:
|
||||
return quadraticPointAtT(*seg, t)
|
||||
elif len(seg) == 4:
|
||||
return cubicPointAtT(*seg, t)
|
||||
raise ValueError("Unknown curve degree")
|
||||
|
||||
|
||||
#
|
||||
# Intersection finders
|
||||
#
|
||||
|
||||
|
||||
def _line_t_of_pt(s, e, pt):
|
||||
sx, sy = s
|
||||
ex, ey = e
|
||||
px, py = pt
|
||||
if not math.isclose(sx, ex):
|
||||
return (px - sx) / (ex - sx)
|
||||
if not math.isclose(sy, ey):
|
||||
return (py - sy) / (ey - sy)
|
||||
# Line is a point!
|
||||
return -1
|
||||
|
||||
|
||||
def _both_points_are_on_same_side_of_origin(a, b, origin):
|
||||
xDiff = (a[0] - origin[0]) * (b[0] - origin[0])
|
||||
yDiff = (a[1] - origin[1]) * (b[1] - origin[1])
|
||||
return not (xDiff <= 0.0 and yDiff <= 0.0)
|
||||
|
||||
|
||||
def lineLineIntersections(s1, e1, s2, e2):
|
||||
"""Finds intersections between two line segments.
|
||||
|
||||
Args:
|
||||
s1, e1: Coordinates of the first line as 2D tuples.
|
||||
s2, e2: Coordinates of the second line as 2D tuples.
|
||||
|
||||
Returns:
|
||||
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
||||
and ``t2`` attributes containing the intersection point, time on first
|
||||
segment and time on second segment respectively.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> a = lineLineIntersections( (310,389), (453, 222), (289, 251), (447, 367))
|
||||
>>> len(a)
|
||||
1
|
||||
>>> intersection = a[0]
|
||||
>>> intersection.pt
|
||||
(374.44882952482897, 313.73458370177315)
|
||||
>>> (intersection.t1, intersection.t2)
|
||||
(0.45069111555824454, 0.5408153767394238)
|
||||
"""
|
||||
s1x, s1y = s1
|
||||
e1x, e1y = e1
|
||||
s2x, s2y = s2
|
||||
e2x, e2y = e2
|
||||
if (
|
||||
math.isclose(s2x, e2x) and math.isclose(s1x, e1x) and not math.isclose(s1x, s2x)
|
||||
): # Parallel vertical
|
||||
return []
|
||||
if (
|
||||
math.isclose(s2y, e2y) and math.isclose(s1y, e1y) and not math.isclose(s1y, s2y)
|
||||
): # Parallel horizontal
|
||||
return []
|
||||
if math.isclose(s2x, e2x) and math.isclose(s2y, e2y): # Line segment is tiny
|
||||
return []
|
||||
if math.isclose(s1x, e1x) and math.isclose(s1y, e1y): # Line segment is tiny
|
||||
return []
|
||||
if math.isclose(e1x, s1x):
|
||||
x = s1x
|
||||
slope34 = (e2y - s2y) / (e2x - s2x)
|
||||
y = slope34 * (x - s2x) + s2y
|
||||
pt = (x, y)
|
||||
return [
|
||||
Intersection(
|
||||
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
|
||||
)
|
||||
]
|
||||
if math.isclose(s2x, e2x):
|
||||
x = s2x
|
||||
slope12 = (e1y - s1y) / (e1x - s1x)
|
||||
y = slope12 * (x - s1x) + s1y
|
||||
pt = (x, y)
|
||||
return [
|
||||
Intersection(
|
||||
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
|
||||
)
|
||||
]
|
||||
|
||||
slope12 = (e1y - s1y) / (e1x - s1x)
|
||||
slope34 = (e2y - s2y) / (e2x - s2x)
|
||||
if math.isclose(slope12, slope34):
|
||||
return []
|
||||
x = (slope12 * s1x - s1y - slope34 * s2x + s2y) / (slope12 - slope34)
|
||||
y = slope12 * (x - s1x) + s1y
|
||||
pt = (x, y)
|
||||
if _both_points_are_on_same_side_of_origin(
|
||||
pt, e1, s1
|
||||
) and _both_points_are_on_same_side_of_origin(pt, s2, e2):
|
||||
return [
|
||||
Intersection(
|
||||
pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt)
|
||||
)
|
||||
]
|
||||
return []
|
||||
|
||||
|
||||
def _alignment_transformation(segment):
|
||||
# Returns a transformation which aligns a segment horizontally at the
|
||||
# origin. Apply this transformation to curves and root-find to find
|
||||
# intersections with the segment.
|
||||
start = segment[0]
|
||||
end = segment[-1]
|
||||
angle = math.atan2(end[1] - start[1], end[0] - start[0])
|
||||
return Identity.rotate(-angle).translate(-start[0], -start[1])
|
||||
|
||||
|
||||
def _curve_line_intersections_t(curve, line):
|
||||
aligned_curve = _alignment_transformation(line).transformPoints(curve)
|
||||
if len(curve) == 3:
|
||||
a, b, c = calcQuadraticParameters(*aligned_curve)
|
||||
intersections = solveQuadratic(a[1], b[1], c[1])
|
||||
elif len(curve) == 4:
|
||||
a, b, c, d = calcCubicParameters(*aligned_curve)
|
||||
intersections = solveCubic(a[1], b[1], c[1], d[1])
|
||||
else:
|
||||
raise ValueError("Unknown curve degree")
|
||||
return sorted([i for i in intersections if 0.0 <= i <= 1])
|
||||
|
||||
|
||||
def curveLineIntersections(curve, line):
|
||||
"""Finds intersections between a curve and a line.
|
||||
|
||||
Args:
|
||||
curve: List of coordinates of the curve segment as 2D tuples.
|
||||
line: List of coordinates of the line segment as 2D tuples.
|
||||
|
||||
Returns:
|
||||
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
||||
and ``t2`` attributes containing the intersection point, time on first
|
||||
segment and time on second segment respectively.
|
||||
|
||||
Examples::
|
||||
>>> curve = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
|
||||
>>> line = [ (25, 260), (230, 20) ]
|
||||
>>> intersections = curveLineIntersections(curve, line)
|
||||
>>> len(intersections)
|
||||
3
|
||||
>>> intersections[0].pt
|
||||
(84.90010344084885, 189.87306176459828)
|
||||
"""
|
||||
if len(curve) == 3:
|
||||
pointFinder = quadraticPointAtT
|
||||
elif len(curve) == 4:
|
||||
pointFinder = cubicPointAtT
|
||||
else:
|
||||
raise ValueError("Unknown curve degree")
|
||||
intersections = []
|
||||
for t in _curve_line_intersections_t(curve, line):
|
||||
pt = pointFinder(*curve, t)
|
||||
intersections.append(Intersection(pt=pt, t1=t, t2=_line_t_of_pt(*line, pt)))
|
||||
return intersections
|
||||
|
||||
|
||||
def _curve_bounds(c):
|
||||
if len(c) == 3:
|
||||
return calcQuadraticBounds(*c)
|
||||
elif len(c) == 4:
|
||||
return calcCubicBounds(*c)
|
||||
raise ValueError("Unknown curve degree")
|
||||
|
||||
|
||||
def _split_segment_at_t(c, t):
|
||||
if len(c) == 2:
|
||||
s, e = c
|
||||
midpoint = linePointAtT(s, e, t)
|
||||
return [(s, midpoint), (midpoint, e)]
|
||||
if len(c) == 3:
|
||||
return splitQuadraticAtT(*c, t)
|
||||
elif len(c) == 4:
|
||||
return splitCubicAtT(*c, t)
|
||||
raise ValueError("Unknown curve degree")
|
||||
|
||||
|
||||
def _curve_curve_intersections_t(
|
||||
curve1, curve2, precision=1e-3, range1=None, range2=None
|
||||
):
|
||||
bounds1 = _curve_bounds(curve1)
|
||||
bounds2 = _curve_bounds(curve2)
|
||||
|
||||
if not range1:
|
||||
range1 = (0.0, 1.0)
|
||||
if not range2:
|
||||
range2 = (0.0, 1.0)
|
||||
|
||||
# If bounds don't intersect, go home
|
||||
intersects, _ = sectRect(bounds1, bounds2)
|
||||
if not intersects:
|
||||
return []
|
||||
|
||||
def midpoint(r):
|
||||
return 0.5 * (r[0] + r[1])
|
||||
|
||||
# If they do overlap but they're tiny, approximate
|
||||
if rectArea(bounds1) < precision and rectArea(bounds2) < precision:
|
||||
return [(midpoint(range1), midpoint(range2))]
|
||||
|
||||
c11, c12 = _split_segment_at_t(curve1, 0.5)
|
||||
c11_range = (range1[0], midpoint(range1))
|
||||
c12_range = (midpoint(range1), range1[1])
|
||||
|
||||
c21, c22 = _split_segment_at_t(curve2, 0.5)
|
||||
c21_range = (range2[0], midpoint(range2))
|
||||
c22_range = (midpoint(range2), range2[1])
|
||||
|
||||
found = []
|
||||
found.extend(
|
||||
_curve_curve_intersections_t(
|
||||
c11, c21, precision, range1=c11_range, range2=c21_range
|
||||
)
|
||||
)
|
||||
found.extend(
|
||||
_curve_curve_intersections_t(
|
||||
c12, c21, precision, range1=c12_range, range2=c21_range
|
||||
)
|
||||
)
|
||||
found.extend(
|
||||
_curve_curve_intersections_t(
|
||||
c11, c22, precision, range1=c11_range, range2=c22_range
|
||||
)
|
||||
)
|
||||
found.extend(
|
||||
_curve_curve_intersections_t(
|
||||
c12, c22, precision, range1=c12_range, range2=c22_range
|
||||
)
|
||||
)
|
||||
|
||||
unique_key = lambda ts: (int(ts[0] / precision), int(ts[1] / precision))
|
||||
seen = set()
|
||||
unique_values = []
|
||||
|
||||
for ts in found:
|
||||
key = unique_key(ts)
|
||||
if key in seen:
|
||||
continue
|
||||
seen.add(key)
|
||||
unique_values.append(ts)
|
||||
|
||||
return unique_values
|
||||
|
||||
|
||||
def curveCurveIntersections(curve1, curve2):
|
||||
"""Finds intersections between a curve and a curve.
|
||||
|
||||
Args:
|
||||
curve1: List of coordinates of the first curve segment as 2D tuples.
|
||||
curve2: List of coordinates of the second curve segment as 2D tuples.
|
||||
|
||||
Returns:
|
||||
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
||||
and ``t2`` attributes containing the intersection point, time on first
|
||||
segment and time on second segment respectively.
|
||||
|
||||
Examples::
|
||||
>>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
|
||||
>>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
|
||||
>>> intersections = curveCurveIntersections(curve1, curve2)
|
||||
>>> len(intersections)
|
||||
3
|
||||
>>> intersections[0].pt
|
||||
(81.7831487395506, 109.88904552375288)
|
||||
"""
|
||||
intersection_ts = _curve_curve_intersections_t(curve1, curve2)
|
||||
return [
|
||||
Intersection(pt=segmentPointAtT(curve1, ts[0]), t1=ts[0], t2=ts[1])
|
||||
for ts in intersection_ts
|
||||
]
|
||||
|
||||
|
||||
def segmentSegmentIntersections(seg1, seg2):
|
||||
"""Finds intersections between two segments.
|
||||
|
||||
Args:
|
||||
seg1: List of coordinates of the first segment as 2D tuples.
|
||||
seg2: List of coordinates of the second segment as 2D tuples.
|
||||
|
||||
Returns:
|
||||
A list of ``Intersection`` objects, each object having ``pt``, ``t1``
|
||||
and ``t2`` attributes containing the intersection point, time on first
|
||||
segment and time on second segment respectively.
|
||||
|
||||
Examples::
|
||||
>>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ]
|
||||
>>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ]
|
||||
>>> intersections = segmentSegmentIntersections(curve1, curve2)
|
||||
>>> len(intersections)
|
||||
3
|
||||
>>> intersections[0].pt
|
||||
(81.7831487395506, 109.88904552375288)
|
||||
>>> curve3 = [ (100, 240), (30, 60), (210, 230), (160, 30) ]
|
||||
>>> line = [ (25, 260), (230, 20) ]
|
||||
>>> intersections = segmentSegmentIntersections(curve3, line)
|
||||
>>> len(intersections)
|
||||
3
|
||||
>>> intersections[0].pt
|
||||
(84.90010344084885, 189.87306176459828)
|
||||
|
||||
"""
|
||||
# Arrange by degree
|
||||
swapped = False
|
||||
if len(seg2) > len(seg1):
|
||||
seg2, seg1 = seg1, seg2
|
||||
swapped = True
|
||||
if len(seg1) > 2:
|
||||
if len(seg2) > 2:
|
||||
intersections = curveCurveIntersections(seg1, seg2)
|
||||
else:
|
||||
intersections = curveLineIntersections(seg1, seg2)
|
||||
elif len(seg1) == 2 and len(seg2) == 2:
|
||||
intersections = lineLineIntersections(*seg1, *seg2)
|
||||
else:
|
||||
raise ValueError("Couldn't work out which intersection function to use")
|
||||
if not swapped:
|
||||
return intersections
|
||||
return [Intersection(pt=i.pt, t1=i.t2, t2=i.t1) for i in intersections]
|
||||
|
||||
|
||||
def _segmentrepr(obj):
|
||||
"""
|
||||
>>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]])
|
||||
@ -773,7 +1212,9 @@ def printSegments(segments):
|
||||
for segment in segments:
|
||||
print(_segmentrepr(segment))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
import doctest
|
||||
|
||||
sys.exit(doctest.testmod().failed)
|
||||
|
Loading…
x
Reference in New Issue
Block a user