Merge pull request #2993 from fonttools/qu2cu

qu2cu
This commit is contained in:
Behdad Esfahbod 2023-02-20 11:04:48 -07:00 committed by GitHub
commit f87a897c7f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1315 additions and 211 deletions

View File

@ -4,7 +4,7 @@ from .cu2qu import *
import random
import timeit
MAX_ERR = 5
MAX_ERR = 0.05
def generate_curve():
@ -23,9 +23,7 @@ def setup_curves_to_quadratic():
return ([generate_curve() for curve in range(num_curves)], [MAX_ERR] * num_curves)
def run_benchmark(
benchmark_module, module, function, setup_suffix="", repeat=5, number=1000
):
def run_benchmark(module, function, setup_suffix="", repeat=5, number=1000):
setup_func = "setup_" + function
if setup_suffix:
print("%s with %s:" % (function, setup_suffix), end="")
@ -48,8 +46,8 @@ def run_benchmark(
def main():
"""Benchmark the cu2qu algorithm performance."""
run_benchmark("cu2qu.benchmark", "cu2qu", "curve_to_quadratic")
run_benchmark("cu2qu.benchmark", "cu2qu", "curves_to_quadratic")
run_benchmark("cu2qu", "curve_to_quadratic")
run_benchmark("cu2qu", "curves_to_quadratic")
if __name__ == "__main__":

View File

@ -7,6 +7,13 @@ from fontTools.misc.transform import Identity
import math
from collections import namedtuple
try:
import cython
except ImportError:
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
Intersection = namedtuple("Intersection", ["pt", "t1", "t2"])
@ -26,10 +33,13 @@ __all__ = [
"splitCubic",
"splitQuadraticAtT",
"splitCubicAtT",
"splitCubicAtTC",
"splitCubicIntoTwoAtTC",
"solveQuadratic",
"solveCubic",
"quadraticPointAtT",
"cubicPointAtT",
"cubicPointAtTC",
"linePointAtT",
"segmentPointAtT",
"lineLineIntersections",
@ -38,6 +48,13 @@ __all__ = [
"segmentSegmentIntersections",
]
if cython.compiled:
# Yep, I'm compiled.
COMPILED = True
else:
# Just a lowly interpreted script.
COMPILED = False
def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005):
"""Calculates the arc length for a cubic Bezier segment.
@ -67,6 +84,14 @@ def _split_cubic_into_two(p0, p1, p2, p3):
)
@cython.returns(cython.double)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mult=cython.double, arch=cython.double, box=cython.double)
def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3):
arch = abs(p0 - p3)
box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3)
@ -79,6 +104,17 @@ def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3):
)
@cython.returns(cython.double)
@cython.locals(
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
pt4=cython.complex,
)
@cython.locals(
tolerance=cython.double,
mult=cython.double,
)
def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005):
"""Calculates the arc length for a cubic Bezier segment.
@ -97,10 +133,18 @@ epsilonDigits = 6
epsilon = 1e-10
@cython.cfunc
@cython.inline
@cython.returns(cython.double)
@cython.locals(v1=cython.complex, v2=cython.complex)
def _dot(v1, v2):
return (v1 * v2.conjugate()).real
@cython.cfunc
@cython.inline
@cython.returns(cython.double)
@cython.locals(x=cython.complex)
def _intSecAtan(x):
# In : sympy.integrate(sp.sec(sp.atan(x)))
# Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2
@ -142,6 +186,25 @@ def calcQuadraticArcLength(pt1, pt2, pt3):
return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
@cython.returns(cython.double)
@cython.locals(
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
d0=cython.complex,
d1=cython.complex,
d=cython.complex,
n=cython.complex,
)
@cython.locals(
scale=cython.double,
origDist=cython.double,
a=cython.double,
b=cython.double,
x0=cython.double,
x1=cython.double,
Len=cython.double,
)
def calcQuadraticArcLengthC(pt1, pt2, pt3):
"""Calculates the arc length for a quadratic Bezier segment.
@ -191,6 +254,17 @@ def approximateQuadraticArcLength(pt1, pt2, pt3):
return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
@cython.returns(cython.double)
@cython.locals(
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
)
@cython.locals(
v0=cython.double,
v1=cython.double,
v2=cython.double,
)
def approximateQuadraticArcLengthC(pt1, pt2, pt3):
"""Calculates the arc length for a quadratic Bezier segment.
@ -288,6 +362,20 @@ def approximateCubicArcLength(pt1, pt2, pt3, pt4):
)
@cython.returns(cython.double)
@cython.locals(
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
pt4=cython.complex,
)
@cython.locals(
v0=cython.double,
v1=cython.double,
v2=cython.double,
v3=cython.double,
v4=cython.double,
)
def approximateCubicArcLengthC(pt1, pt2, pt3, pt4):
"""Approximates the arc length for a cubic Bezier segment.
@ -549,6 +637,70 @@ def splitCubicAtT(pt1, pt2, pt3, pt4, *ts):
return _splitCubicAtT(a, b, c, d, *ts)
@cython.locals(
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
pt4=cython.complex,
a=cython.complex,
b=cython.complex,
c=cython.complex,
d=cython.complex,
)
def splitCubicAtTC(pt1, pt2, pt3, pt4, *ts):
"""Split a cubic Bezier curve at one or more values of t.
Args:
pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers..
*ts: Positions at which to split the curve.
Yields:
Curve segments (each curve segment being four complex numbers).
"""
a, b, c, d = calcCubicParametersC(pt1, pt2, pt3, pt4)
yield from _splitCubicAtTC(a, b, c, d, *ts)
@cython.returns(cython.complex)
@cython.locals(
t=cython.double,
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
pt4=cython.complex,
pointAtT=cython.complex,
off1=cython.complex,
off2=cython.complex,
)
@cython.locals(
t2=cython.double, _1_t=cython.double, _1_t_2=cython.double, _2_t_1_t=cython.double
)
def splitCubicIntoTwoAtTC(pt1, pt2, pt3, pt4, t):
"""Split a cubic Bezier curve at t.
Args:
pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.
t: Position at which to split the curve.
Returns:
A tuple of two curve segments (each curve segment being four complex numbers).
"""
t2 = t * t
_1_t = 1 - t
_1_t_2 = _1_t * _1_t
_2_t_1_t = 2 * t * _1_t
pointAtT = (
_1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
)
off1 = _1_t_2 * pt1 + _2_t_1_t * pt2 + t2 * pt3
off2 = _1_t_2 * pt2 + _2_t_1_t * pt3 + t2 * pt4
pt2 = pt1 + (pt2 - pt1) * t
pt3 = pt4 + (pt3 - pt4) * _1_t
return ((pt1, pt2, off1, pointAtT), (pointAtT, off2, pt3, pt4))
def _splitQuadraticAtT(a, b, c, *ts):
ts = list(ts)
segments = []
@ -611,6 +763,44 @@ def _splitCubicAtT(a, b, c, d, *ts):
return segments
@cython.locals(
a=cython.complex,
b=cython.complex,
c=cython.complex,
d=cython.complex,
t1=cython.double,
t2=cython.double,
delta=cython.double,
delta_2=cython.double,
delta_3=cython.double,
a1=cython.complex,
b1=cython.complex,
c1=cython.complex,
d1=cython.complex,
)
def _splitCubicAtTC(a, b, c, d, *ts):
ts = list(ts)
ts.insert(0, 0.0)
ts.append(1.0)
for i in range(len(ts) - 1):
t1 = ts[i]
t2 = ts[i + 1]
delta = t2 - t1
delta_2 = delta * delta
delta_3 = delta * delta_2
t1_2 = t1 * t1
t1_3 = t1 * t1_2
# calc new a, b, c and d
a1 = a * delta_3
b1 = (3 * a * t1 + b) * delta_2
c1 = (2 * b * t1 + c + 3 * a * t1_2) * delta
d1 = a * t1_3 + b * t1_2 + c * t1 + d
pt1, pt2, pt3, pt4 = calcCubicPointsC(a1, b1, c1, d1)
yield (pt1, pt2, pt3, pt4)
#
# Equation solvers.
#
@ -773,6 +963,22 @@ def calcCubicParameters(pt1, pt2, pt3, pt4):
return (ax, ay), (bx, by), (cx, cy), (dx, dy)
@cython.locals(
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
pt4=cython.complex,
a=cython.complex,
b=cython.complex,
c=cython.complex,
)
def calcCubicParametersC(pt1, pt2, pt3, pt4):
c = (pt2 - pt1) * 3.0
b = (pt3 - pt2) * 3.0 - c
a = pt4 - pt1 - c - b
return (a, b, c, pt1)
def calcQuadraticPoints(a, b, c):
ax, ay = a
bx, by = b
@ -802,6 +1008,23 @@ def calcCubicPoints(a, b, c, d):
return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
@cython.locals(
a=cython.complex,
b=cython.complex,
c=cython.complex,
d=cython.complex,
p2=cython.complex,
p3=cython.complex,
p4=cython.complex,
_1_3=cython.double,
)
def calcCubicPointsC(a, b, c, d, _1_3=1.0 / 3):
p2 = (c * _1_3) + d
p3 = (b + c) * _1_3 + p2
p4 = a + b + c + d
return (d, p2, p3, p4)
#
# Point at time
#
@ -845,21 +1068,47 @@ def cubicPointAtT(pt1, pt2, pt3, pt4, t):
Returns:
A 2D tuple with the coordinates of the point.
"""
t2 = t * t
_1_t = 1 - t
_1_t_2 = _1_t * _1_t
x = (
(1 - t) * (1 - t) * (1 - t) * pt1[0]
+ 3 * (1 - t) * (1 - t) * t * pt2[0]
+ 3 * (1 - t) * t * t * pt3[0]
+ t * t * t * pt4[0]
_1_t_2 * _1_t * pt1[0]
+ 3 * (_1_t_2 * t * pt2[0] + _1_t * t2 * pt3[0])
+ t2 * t * pt4[0]
)
y = (
(1 - t) * (1 - t) * (1 - t) * pt1[1]
+ 3 * (1 - t) * (1 - t) * t * pt2[1]
+ 3 * (1 - t) * t * t * pt3[1]
+ t * t * t * pt4[1]
_1_t_2 * _1_t * pt1[1]
+ 3 * (_1_t_2 * t * pt2[1] + _1_t * t2 * pt3[1])
+ t2 * t * pt4[1]
)
return (x, y)
@cython.returns(cython.complex)
@cython.locals(
t=cython.double,
pt1=cython.complex,
pt2=cython.complex,
pt3=cython.complex,
pt4=cython.complex,
)
@cython.locals(t2=cython.double, _1_t=cython.double, _1_t_2=cython.double)
def cubicPointAtTC(pt1, pt2, pt3, pt4, t):
"""Finds the point at time `t` on a cubic curve.
Args:
pt1, pt2, pt3, pt4: Coordinates of the curve as complex numbers.
t: The time along the curve.
Returns:
A complex number with the coordinates of the point.
"""
t2 = t * t
_1_t = 1 - t
_1_t_2 = _1_t * _1_t
return _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
def segmentPointAtT(seg, t):
if len(seg) == 2:
return linePointAtT(*seg, t)

View File

@ -13,13 +13,14 @@
# limitations under the License.
from fontTools.cu2qu import curve_to_quadratic, curves_to_quadratic
from fontTools.pens.basePen import AbstractPen, decomposeSuperBezierSegment
from fontTools.pens.basePen import decomposeSuperBezierSegment
from fontTools.pens.filterPen import FilterPen
from fontTools.pens.reverseContourPen import ReverseContourPen
from fontTools.pens.pointPen import BasePointToSegmentPen
from fontTools.pens.pointPen import ReverseContourPointPen
class Cu2QuPen(AbstractPen):
class Cu2QuPen(FilterPen):
"""A filter pen to convert cubic bezier curves to quadratic b-splines
using the FontTools SegmentPen protocol.
@ -31,13 +32,6 @@ class Cu2QuPen(AbstractPen):
value equal, or close to UPEM / 1000.
reverse_direction: flip the contours' direction but keep starting point.
stats: a dictionary counting the point numbers of quadratic segments.
ignore_single_points: don't emit contours containing only a single point
NOTE: The "ignore_single_points" argument is deprecated since v1.3.0,
which dropped Robofab support. It's no longer needed to special-case
UFO2-style anchors (aka "named points") when using ufoLib >= 2.0,
as these are no longer drawn onto pens as single-point contours,
but are handled separately as anchors.
"""
def __init__(
@ -46,63 +40,12 @@ class Cu2QuPen(AbstractPen):
max_err,
reverse_direction=False,
stats=None,
ignore_single_points=False,
):
if reverse_direction:
self.pen = ReverseContourPen(other_pen)
else:
self.pen = other_pen
other_pen = ReverseContourPen(other_pen)
super().__init__(other_pen)
self.max_err = max_err
self.stats = stats
if ignore_single_points:
import warnings
warnings.warn(
"ignore_single_points is deprecated and "
"will be removed in future versions",
UserWarning,
stacklevel=2,
)
self.ignore_single_points = ignore_single_points
self.start_pt = None
self.current_pt = None
def _check_contour_is_open(self):
if self.current_pt is None:
raise AssertionError("moveTo is required")
def _check_contour_is_closed(self):
if self.current_pt is not None:
raise AssertionError("closePath or endPath is required")
def _add_moveTo(self):
if self.start_pt is not None:
self.pen.moveTo(self.start_pt)
self.start_pt = None
def moveTo(self, pt):
self._check_contour_is_closed()
self.start_pt = self.current_pt = pt
if not self.ignore_single_points:
self._add_moveTo()
def lineTo(self, pt):
self._check_contour_is_open()
self._add_moveTo()
self.pen.lineTo(pt)
self.current_pt = pt
def qCurveTo(self, *points):
self._check_contour_is_open()
n = len(points)
if n == 1:
self.lineTo(points[0])
elif n > 1:
self._add_moveTo()
self.pen.qCurveTo(*points)
self.current_pt = points[-1]
else:
raise AssertionError("illegal qcurve segment point count: %d" % n)
def _curve_to_quadratic(self, pt1, pt2, pt3):
curve = (self.current_pt, pt1, pt2, pt3)
@ -113,7 +56,6 @@ class Cu2QuPen(AbstractPen):
self.qCurveTo(*quadratic[1:])
def curveTo(self, *points):
self._check_contour_is_open()
n = len(points)
if n == 3:
# this is the most common case, so we special-case it
@ -121,29 +63,8 @@ class Cu2QuPen(AbstractPen):
elif n > 3:
for segment in decomposeSuperBezierSegment(points):
self._curve_to_quadratic(*segment)
elif n == 2:
self.qCurveTo(*points)
elif n == 1:
self.lineTo(points[0])
else:
raise AssertionError("illegal curve segment point count: %d" % n)
def closePath(self):
self._check_contour_is_open()
if self.start_pt is None:
# if 'start_pt' is _not_ None, we are ignoring single-point paths
self.pen.closePath()
self.current_pt = self.start_pt = None
def endPath(self):
self._check_contour_is_open()
if self.start_pt is None:
self.pen.endPath()
self.current_pt = self.start_pt = None
def addComponent(self, glyphName, transformation):
self._check_contour_is_closed()
self.pen.addComponent(glyphName, transformation)
self.qCurveTo(*points)
class Cu2QuPointPen(BasePointToSegmentPen):
@ -288,6 +209,9 @@ class Cu2QuMultiPen:
each of the pens in other_pens.
"""
# TODO Simplify like 3e8ebcdce592fe8a59ca4c3a294cc9724351e1ce
# Remove start_pts and _add_moveTO
def __init__(self, other_pens, max_err, reverse_direction=False):
if reverse_direction:
other_pens = [

View File

@ -56,24 +56,31 @@ class FilterPen(_PassThruComponentsMixin, AbstractPen):
def __init__(self, outPen):
self._outPen = outPen
self.current_pt = None
def moveTo(self, pt):
self._outPen.moveTo(pt)
self.current_pt = pt
def lineTo(self, pt):
self._outPen.lineTo(pt)
self.current_pt = pt
def curveTo(self, *points):
self._outPen.curveTo(*points)
self.current_pt = points[-1]
def qCurveTo(self, *points):
self._outPen.qCurveTo(*points)
self.current_pt = points[-1]
def closePath(self):
self._outPen.closePath()
self.current_pt = None
def endPath(self):
self._outPen.endPath()
self.current_pt = None
class ContourFilterPen(_PassThruComponentsMixin, RecordingPen):

View File

@ -0,0 +1,101 @@
# Copyright 2016 Google Inc. All Rights Reserved.
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fontTools.qu2cu import quadratic_to_curves
from fontTools.pens.filterPen import ContourFilterPen
from fontTools.pens.reverseContourPen import ReverseContourPen
class Qu2CuPen(ContourFilterPen):
"""A filter pen to convert quadratic bezier splines to cubic curves
using the FontTools SegmentPen protocol.
Args:
other_pen: another SegmentPen used to draw the transformed outline.
max_err: maximum approximation error in font units. For optimal results,
if you know the UPEM of the font, we recommend setting this to a
value equal, or close to UPEM / 1000.
reverse_direction: flip the contours' direction but keep starting point.
stats: a dictionary counting the point numbers of cubic segments.
"""
def __init__(
self,
other_pen,
max_err,
all_cubic=False,
reverse_direction=False,
stats=None,
):
if reverse_direction:
other_pen = ReverseContourPen(other_pen)
super().__init__(other_pen)
self.all_cubic = all_cubic
self.max_err = max_err
self.stats = stats
def _quadratics_to_curve(self, q):
curves = quadratic_to_curves(q, self.max_err, self.all_cubic)
if self.stats is not None:
n = str(len(curves))
self.stats[n] = self.stats.get(n, 0) + 1
for curve in curves:
if len(curve) == 4:
yield ("curveTo", curve[1:])
else:
yield ("qCurveTo", curve[1:])
def filterContour(self, contour):
quadratics = []
currentPt = None
newContour = []
for op, args in contour:
if op == "qCurveTo" and (
self.all_cubic or (len(args) > 2 and args[-1] is not None)
):
if args[-1] is None:
raise NotImplementedError(
"oncurve-less contours with all_cubic not implemented"
)
quadratics.append((currentPt,) + args)
else:
if quadratics:
newContour.extend(self._quadratics_to_curve(quadratics))
quadratics = []
newContour.append((op, args))
currentPt = args[-1] if args else None
if quadratics:
newContour.extend(self._quadratics_to_curve(quadratics))
# Add back implicit oncurve points
contour = newContour
newContour = []
for op, args in contour:
if op == "qCurveTo" and newContour and newContour[-1][0] == "qCurveTo":
pt0 = newContour[-1][1][-2]
pt1 = newContour[-1][1][-1]
pt2 = args[0]
if (
pt2[0] - pt1[0] == pt1[0] - pt0[0]
and pt2[1] - pt1[1] == pt1[1] - pt0[1]
):
newArgs = newContour[-1][1][:-1] + args
newContour[-1] = (op, newArgs)
continue
newContour.append((op, args))
return newContour

View File

@ -7,6 +7,7 @@ from fontTools.misc.roundTools import otRound
from fontTools.pens.basePen import LoggingPen, PenError
from fontTools.pens.transformPen import TransformPen, TransformPointPen
from fontTools.ttLib.tables import ttProgram
from fontTools.ttLib.tables._g_l_y_f import flagOnCurve
from fontTools.ttLib.tables._g_l_y_f import Glyph
from fontTools.ttLib.tables._g_l_y_f import GlyphComponent
from fontTools.ttLib.tables._g_l_y_f import GlyphCoordinates
@ -124,7 +125,7 @@ class _TTGlyphBasePen:
components.append(component)
return components
def glyph(self, componentFlags: int = 0x4) -> Glyph:
def glyph(self, componentFlags: int = 0x4, preserveTopology=True) -> Glyph:
"""
Returns a :py:class:`~._g_l_y_f.Glyph` object representing the glyph.
"""
@ -149,6 +150,52 @@ class _TTGlyphBasePen:
glyph.program = ttProgram.Program()
glyph.program.fromBytecode(b"")
if not preserveTopology:
# Drop implied on-curve points
drop = set()
start = 0
flags = glyph.flags
coords = glyph.coordinates
for last in glyph.endPtsOfContours:
for i in range(start, last + 1):
if not (flags[i] & flagOnCurve):
continue
prv = i - 1 if i > start else last
nxt = i + 1 if i < last else start
if (flags[prv] & flagOnCurve) or flags[prv] != flags[nxt]:
continue
p0 = coords[prv]
p1 = coords[i]
p2 = coords[nxt]
if p1[0] - p0[0] != p2[0] - p1[0] or p1[1] - p0[1] != p2[1] - p1[1]:
continue
drop.add(i)
if drop:
# Do the actual dropping
glyph.coordinates = GlyphCoordinates(
coords[i] for i in range(len(coords)) if i not in drop
)
glyph.flags = array(
"B", (flags[i] for i in range(len(flags)) if i not in drop)
)
endPts = glyph.endPtsOfContours
newEndPts = []
i = 0
delta = 0
for d in sorted(drop):
while d > endPts[i]:
newEndPts.append(endPts[i] - delta)
i += 1
delta += 1
while i < len(endPts):
newEndPts.append(endPts[i] - delta)
i += 1
glyph.endPtsOfContours = newEndPts
return glyph

View File

@ -0,0 +1,15 @@
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .qu2cu import *

View File

@ -0,0 +1,7 @@
import sys
from .cli import main
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,52 @@
"""Benchmark the qu2cu algorithm performance."""
from .qu2cu import *
from fontTools.cu2qu import curve_to_quadratic
import random
import timeit
MAX_ERR = 0.05
def generate_curve():
return [
tuple(float(random.randint(0, 2048)) for coord in range(2))
for point in range(4)
]
def setup_quadratic_to_curves():
curve = generate_curve()
quadratics = curve_to_quadratic(curve, MAX_ERR)
return [quadratics], MAX_ERR
def run_benchmark(module, function, setup_suffix="", repeat=10, number=20):
setup_func = "setup_" + function
if setup_suffix:
print("%s with %s:" % (function, setup_suffix), end="")
setup_func += "_" + setup_suffix
else:
print("%s:" % function, end="")
def wrapper(function, setup_func):
function = globals()[function]
setup_func = globals()[setup_func]
def wrapped():
return function(*setup_func())
return wrapped
results = timeit.repeat(wrapper(function, setup_func), repeat=repeat, number=number)
print("\t%5.1fus" % (min(results) * 1000000.0 / number))
def main():
"""Benchmark the qu2cu algorithm performance."""
run_benchmark("qu2cu", "quadratic_to_curves")
if __name__ == "__main__":
random.seed(1)
main()

109
Lib/fontTools/qu2cu/cli.py Normal file
View File

@ -0,0 +1,109 @@
import os
import argparse
import logging
from fontTools.misc.cliTools import makeOutputFileName
from fontTools.ttLib import TTFont
from fontTools.pens.qu2cuPen import Qu2CuPen
from fontTools.pens.ttGlyphPen import TTGlyphPen
import fontTools
logger = logging.getLogger("fontTools.qu2cu")
def _font_to_cubic(input_path, output_path=None, **kwargs):
font = TTFont(input_path)
logger.info("Converting curves for %s", input_path)
qu2cu_kwargs = {
"stats": {} if kwargs["dump_stats"] else None,
"max_err": kwargs["max_err_em"] * font["head"].unitsPerEm,
}
assert "gvar" not in font, "Cannot convert variable font"
glyphSet = font.getGlyphSet()
glyphOrder = font.getGlyphOrder()
glyf = font["glyf"]
for glyphName in glyphOrder:
glyph = glyphSet[glyphName]
ttpen = TTGlyphPen(glyphSet)
pen = Qu2CuPen(ttpen, **qu2cu_kwargs)
glyph.draw(pen)
glyf[glyphName] = ttpen.glyph(preserveTopology=False)
logger.info("Saving %s", output_path)
font.save(output_path)
def main(args=None):
parser = argparse.ArgumentParser(prog="qu2cu")
parser.add_argument("--version", action="version", version=fontTools.__version__)
parser.add_argument(
"infiles",
nargs="+",
metavar="INPUT",
help="one or more input TTF source file(s).",
)
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-e",
"--conversion-error",
type=float,
metavar="ERROR",
default=0.001,
help="maxiumum approximation error measured in EM (default: 0.001)",
)
output_parser = parser.add_mutually_exclusive_group()
output_parser.add_argument(
"-o",
"--output-file",
default=None,
metavar="OUTPUT",
help=("output filename for the converted TTF."),
)
output_parser.add_argument(
"-d",
"--output-dir",
default=None,
metavar="DIRECTORY",
help="output directory where to save converted TTFs",
)
options = parser.parse_args(args)
if not options.verbose:
level = "WARNING"
elif options.verbose == 1:
level = "INFO"
else:
level = "DEBUG"
logging.basicConfig(level=level)
if len(options.infiles) > 1 and options.output_file:
parser.error("-o/--output-file can't be used with multile inputs")
if options.output_dir:
output_dir = options.output_dir
if not os.path.exists(output_dir):
os.mkdir(output_dir)
elif not os.path.isdir(output_dir):
parser.error("'%s' is not a directory" % output_dir)
output_paths = [
os.path.join(output_dir, os.path.basename(p)) for p in options.infiles
]
elif options.output_file:
output_paths = [options.output_file]
else:
output_paths = [
makeOutputFileName(p, overWrite=True, suffix=".cubic")
for p in options.infiles
]
kwargs = dict(
dump_stats=options.verbose > 0,
max_err_em=options.conversion_error,
)
for input_path, output_path in zip(options.infiles, output_paths):
_font_to_cubic(input_path, output_path, **kwargs)

View File

@ -0,0 +1,363 @@
# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2023 Google Inc. All Rights Reserved.
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
except ImportError:
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
from fontTools.misc.bezierTools import splitCubicAtTC
from collections import namedtuple
from typing import (
List,
Tuple,
Union,
)
__all__ = ["quadratic_to_curves"]
if cython.compiled:
# Yep, I'm compiled.
COMPILED = True
else:
# Just a lowly interpreted script.
COMPILED = False
# Copied from cu2qu
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.locals(_1_3=cython.double, _2_3=cython.double)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p1_2_3=cython.complex,
)
def elevate_quadratic(p0, p1, p2, _1_3=1 / 3, _2_3=2 / 3):
"""Given a quadratic bezier curve, return its degree-elevated cubic."""
# https://pomax.github.io/bezierinfo/#reordering
p1_2_3 = p1 * _2_3
return (
p0,
(p0 * _1_3 + p1_2_3),
(p2 * _1_3 + p1_2_3),
p2,
)
@cython.locals(
n=cython.int,
k=cython.int,
prod_ratio=cython.double,
sum_ratio=cython.double,
ratio=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
def merge_curves(curves):
"""Give a cubic-Bezier spline, reconstruct one cubic-Bezier
that has the same endpoints and tangents and approxmates
the spline."""
# Reconstruct the t values of the cut segments
n = len(curves)
prod_ratio = 1.0
sum_ratio = 1.0
ts = [1]
for k in range(1, n):
ck = curves[k]
c_before = curves[k - 1]
# |t_(k+1) - t_k| / |t_k - t_(k - 1)| = ratio
assert ck[0] == c_before[3]
ratio = abs(ck[1] - ck[0]) / abs(c_before[3] - c_before[2])
prod_ratio *= ratio
sum_ratio += prod_ratio
ts.append(sum_ratio)
# (t(n) - t(n - 1)) / (t_(1) - t(0)) = prod_ratio
ts = [t / sum_ratio for t in ts[:-1]]
p0 = curves[0][0]
p1 = curves[0][1]
p2 = curves[n - 1][2]
p3 = curves[n - 1][3]
# Build the curve by scaling the control-points.
p1 = p0 + (p1 - p0) / (ts[0] if ts else 1)
p2 = p3 + (p2 - p3) / ((1 - ts[-1]) if ts else 1)
curve = (p0, p1, p2, p3)
return curve, ts
def add_implicit_on_curves(p):
q = list(p)
count = 0
num_offcurves = len(p) - 2
for i in range(1, num_offcurves):
off1 = p[i]
off2 = p[i + 1]
on = off1 + (off2 - off1) * 0.5
q.insert(i + 1 + count, on)
count += 1
return q
Point = Union[Tuple[float, float], complex]
def quadratic_to_curves(
quads: List[List[Point]],
max_err: float = 0.5,
all_cubic: bool = False,
) -> List[Tuple[Point, ...]]:
"""Converts a connecting list of quadratic splines to a list of quadratic
and cubic curves.
A quadratic spline is specified as a list of points. Either each point is
a 2-tuple of X,Y coordinates, or each point is a complex number with
real/imaginary components representing X,Y coordinates.
The first and last points are on-curve points and the rest are off-curve
points, with an implied on-curve point in the middle between every two
consequtive off-curve points.
Returns:
The output is a list of tuples of points. Points are represented
in the same format as the input, either as 2-tuples or complex numbers.
Each tuple is either of length three, for a quadratic curve, or four,
for a cubic curve. Each curve's last point is the same as the next
curve's first point.
Args:
quads: quadratic splines
max_err: absolute error tolerance; defaults to 0.5
all_cubic: if True, only cubic curves are generated; defaults to False
"""
is_complex = type(quads[0][0]) is complex
if not is_complex:
quads = [[complex(x, y) for (x, y) in p] for p in quads]
q = [quads[0][0]]
cost = 0
costs = [0]
for p in quads:
assert q[-1] == p[0]
for i in range(len(p) - 2):
cost += 1
costs.append(cost)
costs.append(cost + 1)
qq = add_implicit_on_curves(p)[1:]
q.extend(qq)
cost += 1
costs.append(cost)
costs.append(cost + 1)
curves = spline_to_curves(q, costs, max_err, all_cubic)
if not is_complex:
curves = [tuple((c.real, c.imag) for c in curve) for curve in curves]
return curves
Solution = namedtuple("Solution", ["num_points", "error", "start_index", "is_cubic"])
def spline_to_curves(q, costs, tolerance=0.5, all_cubic=False):
"""
q: quadratic spline with alternating on-curve / off-curve points.
costs: cumulative list of encoding cost of q in terms of number of
points that need to be encoded. Implied on-curve points do not
contribute to the cost. If all points need to be encoded, then
costs will be range(len(q)+1).
"""
assert len(q) >= 3, "quadratic spline requires at least 3 points"
# Elevate quadratic segments to cubic
elevated_quadratics = [
elevate_quadratic(*q[i : i + 3]) for i in range(0, len(q) - 2, 2)
]
# Dynamic-Programming to find the solution with fewest number of
# cubic curves, and within those the one with smallest error.
sols = [Solution(0, 0, 0, False)]
for i in range(1, len(elevated_quadratics) + 1):
best_sol = Solution(len(q) + 2, 0, 1, False)
for j in range(0, i):
j_sol_count, j_sol_error = sols[j].num_points, sols[j].error
if not all_cubic:
# Solution with quadratics between j:i
this_count = costs[2 * i] - costs[2 * j]
i_sol_count = j_sol_count + this_count
i_sol_error = j_sol_error
i_sol = Solution(i_sol_count, i_sol_error, i - j, False)
if i_sol < best_sol:
best_sol = i_sol
if this_count == 3:
# Can't get any better than this
break
# Fit elevated_quadratics[j:i] into one cubic
try:
curve, ts = merge_curves(elevated_quadratics[j:i])
except ZeroDivisionError:
continue
# Now reconstruct the segments from the fitted curve
reconstructed_iter = splitCubicAtTC(*curve, *ts)
reconstructed = []
# Knot errors
error = 0
for k, reconst in enumerate(reconstructed_iter):
orig = elevated_quadratics[j + k]
err = abs(reconst[3] - orig[3])
error = max(error, err)
if error > tolerance:
break
reconstructed.append(reconst)
if error > tolerance:
# Not feasible
continue
# Interior errors
for k, reconst in enumerate(reconstructed):
orig = elevated_quadratics[j + k]
p0, p1, p2, p3 = tuple(v - u for v, u in zip(reconst, orig))
if not cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
error = tolerance + 1
break
if error > tolerance:
# Not feasible
continue
# Save best solution
i_sol_count = j_sol_count + 3
i_sol_error = max(j_sol_error, error)
i_sol = Solution(i_sol_count, i_sol_error, i - j, True)
if i_sol < best_sol:
best_sol = i_sol
if i_sol_count == 3:
# Can't get any better than this
break
sols.append(best_sol)
# Reconstruct solution
splits = []
cubic = []
i = len(sols) - 1
while i:
count, is_cubic = sols[i].start_index, sols[i].is_cubic
splits.append(i)
cubic.append(is_cubic)
i -= count
curves = []
j = 0
for i, is_cubic in reversed(list(zip(splits, cubic))):
if is_cubic:
curves.append(merge_curves(elevated_quadratics[j:i])[0])
else:
for k in range(j, i):
curves.append(q[k * 2 : k * 2 + 3])
j = i
return curves
def main():
from fontTools.cu2qu.benchmark import generate_curve
from fontTools.cu2qu import curve_to_quadratic
tolerance = 0.05
reconstruct_tolerance = tolerance * 1
curve = generate_curve()
quadratics = curve_to_quadratic(curve, tolerance)
print(
"cu2qu tolerance %g. qu2cu tolerance %g." % (tolerance, reconstruct_tolerance)
)
print("One random cubic turned into %d quadratics." % len(quadratics))
curves = quadratic_to_curves([quadratics], reconstruct_tolerance)
print("Those quadratics turned back into %d cubics. " % len(curves))
print("Original curve:", curve)
print("Reconstructed curve(s):", curves)
if __name__ == "__main__":
main()

View File

@ -117,52 +117,6 @@ class TestCu2QuPen(unittest.TestCase, _TestPenMixin):
self.pen_getter_name = "getPen"
self.draw_method_name = "draw"
def test__check_contour_is_open(self):
msg = "moveTo is required"
quadpen = Cu2QuPen(DummyPen(), MAX_ERR)
with self.assertRaisesRegex(AssertionError, msg):
quadpen.lineTo((0, 0))
with self.assertRaisesRegex(AssertionError, msg):
quadpen.qCurveTo((0, 0), (1, 1))
with self.assertRaisesRegex(AssertionError, msg):
quadpen.curveTo((0, 0), (1, 1), (2, 2))
with self.assertRaisesRegex(AssertionError, msg):
quadpen.closePath()
with self.assertRaisesRegex(AssertionError, msg):
quadpen.endPath()
quadpen.moveTo((0, 0)) # now it works
quadpen.lineTo((1, 1))
quadpen.qCurveTo((2, 2), (3, 3))
quadpen.curveTo((4, 4), (5, 5), (6, 6))
quadpen.closePath()
def test__check_contour_closed(self):
msg = "closePath or endPath is required"
quadpen = Cu2QuPen(DummyPen(), MAX_ERR)
quadpen.moveTo((0, 0))
with self.assertRaisesRegex(AssertionError, msg):
quadpen.moveTo((1, 1))
with self.assertRaisesRegex(AssertionError, msg):
quadpen.addComponent("a", (1, 0, 0, 1, 0, 0))
# it works if contour is closed
quadpen.closePath()
quadpen.moveTo((1, 1))
quadpen.endPath()
quadpen.addComponent("a", (1, 0, 0, 1, 0, 0))
def test_qCurveTo_no_points(self):
quadpen = Cu2QuPen(DummyPen(), MAX_ERR)
quadpen.moveTo((0, 0))
with self.assertRaisesRegex(
AssertionError, "illegal qcurve segment point count: 0"
):
quadpen.qCurveTo()
def test_qCurveTo_1_point(self):
pen = DummyPen()
quadpen = Cu2QuPen(pen, MAX_ERR)
@ -173,7 +127,7 @@ class TestCu2QuPen(unittest.TestCase, _TestPenMixin):
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.lineTo((1, 1))",
"pen.qCurveTo((1, 1))",
],
)
@ -191,15 +145,6 @@ class TestCu2QuPen(unittest.TestCase, _TestPenMixin):
],
)
def test_curveTo_no_points(self):
quadpen = Cu2QuPen(DummyPen(), MAX_ERR)
quadpen.moveTo((0, 0))
with self.assertRaisesRegex(
AssertionError, "illegal curve segment point count: 0"
):
quadpen.curveTo()
def test_curveTo_1_point(self):
pen = DummyPen()
quadpen = Cu2QuPen(pen, MAX_ERR)
@ -210,7 +155,7 @@ class TestCu2QuPen(unittest.TestCase, _TestPenMixin):
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.lineTo((1, 1))",
"pen.qCurveTo((1, 1))",
],
)
@ -258,59 +203,6 @@ class TestCu2QuPen(unittest.TestCase, _TestPenMixin):
],
)
def test_addComponent(self):
pen = DummyPen()
quadpen = Cu2QuPen(pen, MAX_ERR)
quadpen.addComponent("a", (1, 2, 3, 4, 5.0, 6.0))
# components are passed through without changes
self.assertEqual(
str(pen).splitlines(),
[
"pen.addComponent('a', (1, 2, 3, 4, 5.0, 6.0))",
],
)
def test_ignore_single_points(self):
pen = DummyPen()
try:
logging.captureWarnings(True)
with CapturingLogHandler("py.warnings", level="WARNING") as log:
quadpen = Cu2QuPen(pen, MAX_ERR, ignore_single_points=True)
finally:
logging.captureWarnings(False)
quadpen.moveTo((0, 0))
quadpen.endPath()
quadpen.moveTo((1, 1))
quadpen.closePath()
self.assertGreaterEqual(len(log.records), 1)
if sys.version_info < (3, 11):
self.assertIn("ignore_single_points is deprecated", log.records[0].args[0])
else:
self.assertIn("ignore_single_points is deprecated", log.records[0].msg)
# single-point contours were ignored, so the pen commands are empty
self.assertFalse(pen.commands)
# redraw without ignoring single points
quadpen.ignore_single_points = False
quadpen.moveTo((0, 0))
quadpen.endPath()
quadpen.moveTo((1, 1))
quadpen.closePath()
self.assertTrue(pen.commands)
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.endPath()",
"pen.moveTo((1, 1))",
"pen.closePath()",
],
)
class TestCu2QuPointPen(unittest.TestCase, _TestPenMixin):
def __init__(self, *args, **kwargs):

224
Tests/pens/qu2cuPen_test.py Normal file
View File

@ -0,0 +1,224 @@
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
from fontTools.pens.qu2cuPen import Qu2CuPen
from fontTools.pens.recordingPen import RecordingPen
from . import CUBIC_GLYPHS, QUAD_GLYPHS
from .utils import DummyGlyph
from .utils import DummyPen
from textwrap import dedent
MAX_ERR = 1.0
class _TestPenMixin(object):
"""Collection of tests that are shared by both the SegmentPen and the
PointPen test cases, plus some helper methods.
Note: We currently don't have a PointPen.
"""
maxDiff = None
def diff(self, expected, actual):
import difflib
expected = str(self.Glyph(expected)).splitlines(True)
actual = str(self.Glyph(actual)).splitlines(True)
diff = difflib.unified_diff(
expected, actual, fromfile="expected", tofile="actual"
)
return "".join(diff)
def convert_glyph(self, glyph, **kwargs):
# draw source glyph onto a new glyph using a Cu2Qu pen and return it
converted = self.Glyph()
pen = getattr(converted, self.pen_getter_name)()
cubicpen = self.Qu2CuPen(pen, MAX_ERR, all_cubic=True, **kwargs)
getattr(glyph, self.draw_method_name)(cubicpen)
return converted
def expect_glyph(self, source, expected):
converted = self.convert_glyph(source)
self.assertNotEqual(converted, source)
if not converted.approx(expected):
print(self.diff(expected, converted))
self.fail("converted glyph is different from expected")
def test_convert_simple_glyph(self):
self.expect_glyph(QUAD_GLYPHS["a"], CUBIC_GLYPHS["a"])
self.expect_glyph(QUAD_GLYPHS["A"], CUBIC_GLYPHS["A"])
def test_convert_composite_glyph(self):
source = CUBIC_GLYPHS["Aacute"]
converted = self.convert_glyph(source)
# components don't change after quadratic conversion
self.assertEqual(converted, source)
def test_reverse_direction(self):
for name in ("a", "A", "Eacute"):
source = QUAD_GLYPHS[name]
normal_glyph = self.convert_glyph(source)
reversed_glyph = self.convert_glyph(source, reverse_direction=True)
# the number of commands is the same, just their order is iverted
self.assertTrue(len(normal_glyph.outline), len(reversed_glyph.outline))
self.assertNotEqual(normal_glyph, reversed_glyph)
def test_stats(self):
stats = {}
for name in QUAD_GLYPHS.keys():
source = QUAD_GLYPHS[name]
self.convert_glyph(source, stats=stats)
self.assertTrue(stats)
self.assertTrue("1" in stats)
self.assertEqual(type(stats["1"]), int)
def test_addComponent(self):
pen = self.Pen()
cubicpen = self.Qu2CuPen(pen, MAX_ERR)
cubicpen.addComponent("a", (1, 2, 3, 4, 5.0, 6.0))
# components are passed through without changes
self.assertEqual(
str(pen).splitlines(),
[
"pen.addComponent('a', (1, 2, 3, 4, 5.0, 6.0))",
],
)
class TestQu2CuPen(unittest.TestCase, _TestPenMixin):
def __init__(self, *args, **kwargs):
super(TestQu2CuPen, self).__init__(*args, **kwargs)
self.Glyph = DummyGlyph
self.Pen = DummyPen
self.Qu2CuPen = Qu2CuPen
self.pen_getter_name = "getPen"
self.draw_method_name = "draw"
def test_qCurveTo_1_point(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.moveTo((0, 0))
cubicpen.qCurveTo((1, 1))
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.qCurveTo((1, 1))",
"pen.closePath()",
],
)
def test_qCurveTo_2_points(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.moveTo((0, 0))
cubicpen.qCurveTo((1, 1), (2, 2))
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.qCurveTo((1, 1), (2, 2))",
"pen.closePath()",
],
)
def test_qCurveTo_3_points_no_conversion(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.moveTo((0, 0))
cubicpen.qCurveTo((0, 3), (1, 3), (1, 0))
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.qCurveTo((0, 3), (1, 3), (1, 0))",
"pen.closePath()",
],
)
def test_qCurveTo_no_oncurve_points(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.qCurveTo((0, 0), (1, 0), (1, 1), (0, 1), None)
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
["pen.qCurveTo((0, 0), (1, 0), (1, 1), (0, 1), None)", "pen.closePath()"],
)
def test_curveTo_1_point(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.moveTo((0, 0))
cubicpen.curveTo((1, 1))
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.curveTo((1, 1))",
"pen.closePath()",
],
)
def test_curveTo_2_points(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.moveTo((0, 0))
cubicpen.curveTo((1, 1), (2, 2))
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.curveTo((1, 1), (2, 2))",
"pen.closePath()",
],
)
def test_curveTo_3_points(self):
pen = DummyPen()
cubicpen = Qu2CuPen(pen, MAX_ERR)
cubicpen.moveTo((0, 0))
cubicpen.curveTo((1, 1), (2, 2), (3, 3))
cubicpen.closePath()
self.assertEqual(
str(pen).splitlines(),
[
"pen.moveTo((0, 0))",
"pen.curveTo((1, 1), (2, 2), (3, 3))",
"pen.closePath()",
],
)
if __name__ == "__main__":
unittest.main()

View File

@ -226,7 +226,11 @@ def _repr_pen_commands(commands):
# cast float to int if there're no digits after decimal point,
# and round floats to 12 decimal digits (more than enough)
args = [
tuple((int(v) if int(v) == v else round(v, 12)) for v in pt)
(
tuple((int(v) if int(v) == v else round(v, 12)) for v in pt)
if pt is not None
else None
)
for pt in args
]
args = ", ".join(repr(a) for a in args)

106
Tests/qu2cu/qu2cu_test.py Normal file
View File

@ -0,0 +1,106 @@
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from fontTools.qu2cu import quadratic_to_curves
from fontTools.qu2cu.qu2cu import main as qu2cu_main
from fontTools.qu2cu.benchmark import main as benchmark_main
import os
import json
from fontTools.cu2qu import curve_to_quadratic
class Qu2CuTest:
@pytest.mark.parametrize(
"quadratics, expected, tolerance, cubic_only",
[
(
[
[(0, 0), (0, 1), (2, 1), (2, 0)],
],
[
((0, 0), (0, 4 / 3), (2, 4 / 3), (2, 0)),
],
0.1,
True,
),
(
[
[(0, 0), (0, 1), (2, 1), (2, 2)],
],
[
((0, 0), (0, 4 / 3), (2, 2 / 3), (2, 2)),
],
0.2,
True,
),
(
[
[(0, 0), (0, 1), (1, 1)],
[(1, 1), (3, 1), (3, 0)],
],
[
((0, 0), (0, 1), (1, 1)),
((1, 1), (3, 1), (3, 0)),
],
0.2,
False,
),
(
[
[(0, 0), (0, 1), (1, 1)],
[(1, 1), (3, 1), (3, 0)],
],
[
((0, 0), (0, 2 / 3), (1 / 3, 1), (1, 1)),
((1, 1), (7 / 3, 1), (3, 2 / 3), (3, 0)),
],
0.2,
True,
),
],
)
def test_simple(self, quadratics, expected, tolerance, cubic_only):
expected = [
tuple((pytest.approx(p[0]), pytest.approx(p[1])) for p in curve)
for curve in expected
]
c = quadratic_to_curves(quadratics, tolerance, cubic_only)
assert c == expected
def test_roundtrip(self):
DATADIR = os.path.join(os.path.dirname(__file__), "..", "cu2qu", "data")
with open(os.path.join(DATADIR, "curves.json"), "r") as fp:
curves = json.load(fp)
tolerance = 1
splines = [curve_to_quadratic(c, tolerance) for c in curves]
reconsts = [quadratic_to_curves([spline], tolerance) for spline in splines]
for curve, reconst in zip(curves, reconsts):
assert len(reconst) == 1
curve = tuple((pytest.approx(p[0]), pytest.approx(p[1])) for p in curve)
assert curve == reconst[0]
def test_main(self):
# Just for coverage
qu2cu_main()
benchmark_main()

View File

@ -73,6 +73,12 @@ if with_cython is True or (with_cython is None and has_cython):
ext_modules.append(
Extension("fontTools.cu2qu.cu2qu", ["Lib/fontTools/cu2qu/cu2qu.py"]),
)
ext_modules.append(
Extension("fontTools.qu2cu.qu2cu", ["Lib/fontTools/qu2cu/qu2cu.py"]),
)
ext_modules.append(
Extension("fontTools.misc.bezierTools", ["Lib/fontTools/misc/bezierTools.py"]),
)
ext_modules.append(
Extension("fontTools.pens.momentsPen", ["Lib/fontTools/pens/momentsPen.py"]),
)