# -*- coding: utf-8 -*- """Calculate the perimeter of a glyph.""" from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools.pens.basePen import BasePen from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT, approximateQuadraticArcLengthC, calcQuadraticArcLengthC, approximateCubicArcLengthC import math __all__ = ["PerimeterPen"] def _distance(p0, p1): return math.hypot(p0[0] - p1[0], p0[1] - p1[1]) def _split_cubic_into_two(p0, p1, p2, p3): mid = (p0 + 3 * (p1 + p2) + p3) * .125 deriv3 = (p3 + p2 - p1 - p0) * .125 return ((p0, (p0 + p1) * .5, mid - deriv3, mid), (mid, mid + deriv3, (p2 + p3) * .5, p3)) class PerimeterPen(BasePen): def __init__(self, glyphset=None, tolerance=0.005): BasePen.__init__(self, glyphset) self.value = 0 self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math # Choose which algorithm to use for quadratic and for cubic. # Quadrature is faster but has fixed error characteristic with no strong # error bound. The cutoff points are derived empirically. self._addCubic = self._addCubicQuadrature if tolerance >= 0.0015 else self._addCubicRecursive self._addQuadratic = self._addQuadraticQuadrature if tolerance >= 0.00075 else self._addQuadraticExact def _moveTo(self, p0): self.__startPoint = p0 def _closePath(self): p0 = self._getCurrentPoint() if p0 != self.__startPoint: self._lineTo(self.__startPoint) def _lineTo(self, p1): p0 = self._getCurrentPoint() self.value += _distance(p0, p1) def _addQuadraticExact(self, c0, c1, c2): self.value += calcQuadraticArcLengthC(c0, c1, c2) def _addQuadraticQuadrature(self, c0, c1, c2): self.value += approximateQuadraticArcLengthC(c0, c1, c2) def _qCurveToOne(self, p1, p2): p0 = self._getCurrentPoint() self._addQuadratic(complex(*p0), complex(*p1), complex(*p2)) def _addCubicRecursive(self, p0, p1, p2, p3): arch = abs(p0-p3) box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3) if arch * self._mult >= box: self.value += (arch + box) * .5 else: one,two = _split_cubic_into_two(p0,p1,p2,p3) self._addCubicRecursive(*one) self._addCubicRecursive(*two) def _addCubicQuadrature(self, c0, c1, c2, c3): self.value += approximateCubicArcLengthC(c0, c1, c2, c3) def _curveToOne(self, p1, p2, p3): p0 = self._getCurrentPoint() self._addCubic(complex(*p0), complex(*p1), complex(*p2), complex(*p3))