# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division, absolute_import __all__ = ['curve_to_quadratic', 'curves_to_quadratic'] MAX_N = 100 class Cu2QuError(Exception): pass class ApproxNotFoundError(Cu2QuError): def __init__(self, curve): message = "no approximation found: %s" % curve super(Cu2QuError, self).__init__(message) self.curve = curve def dot(v1, v2): """Return the dot product of two vectors.""" return (v1 * v2.conjugate()).real def calc_cubic_points(a, b, c, d): _1 = d _2 = (c / 3.0) + d _3 = (b + c) / 3.0 + _2 _4 = a + d + c + b return _1, _2, _3, _4 def calc_cubic_parameters(p0, p1, p2, p3): c = (p1 - p0) * 3.0 b = (p2 - p1) * 3.0 - c d = p0 a = p3 - d - c - b return a, b, c, d def split_cubic_into_n(p0, p1, p2, p3, n): a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3) segments = [] dt = 1 / n delta_2 = dt * dt delta_3 = dt * delta_2 for i in range(n): t1 = i * dt t1_2 = t1 * t1 t1_3 = t1 * t1_2 # calc new a, b, c and d a1 = a * delta_3 b1 = (3*a*t1 + b) * delta_2 c1 = (2*b*t1 + c + 3*a*t1_2) * dt d1 = a*t1_3 + b*t1_2 + c*t1 + d segments.append(calc_cubic_points(a1, b1, c1, d1)) return segments def split_cubic_into_two(p0, p1, p2, p3): mid = (p0 + 3 * (p1 + p2) + p3) * .125 deriv3 = (p3 + p2 - p1 - p0) * .125 return ((p0, (p0 + p1) * .5, mid - deriv3, mid), (mid, mid + deriv3, (p2 + p3) * .5, p3)) def split_cubic_into_three(p0, p1, p2, p3, _27=1/27): # we define 1/27 as a keyword argument so that it will be evaluated only # once but still in the scope of this function mid1 = (8*p0 + 12*p1 + 6*p2 + p3) * _27 deriv1 = (p3 + 3*p2 - 4*p0) * _27 mid2 = (p0 + 6*p1 + 12*p2 + 8*p3) * _27 deriv2 = (4*p3 - 3*p1 - p0) * _27 return ((p0, (2*p0 + p1) / 3, mid1 - deriv1, mid1), (mid1, mid1 + deriv1, mid2 - deriv2, mid2), (mid2, mid2 + deriv2, (p2 + 2*p3) / 3, p3)) def cubic_approx_control(p, t): """Approximate a cubic bezier curve with a quadratic one. Returns the candidate control point.""" p1 = p[0] + (p[1] - p[0]) * 1.5 p2 = p[3] + (p[2] - p[3]) * 1.5 return p1 + (p2 - p1) * t def calc_intersect(a, b, c, d): """Calculate the intersection of ab and cd, given a, b, c, d.""" ab = b - a cd = d - c p = ab * 1j try: h = dot(p, a - c) / dot(p, cd) except ZeroDivisionError: return None return c + cd * h def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance): """Returns True if the cubic Bezier p entirely lies within a distance tolerance of origin, False otherwise. Assumes that p0 and p3 do fit within tolerance of origin, and just checks the inside of the curve.""" # First check p2 then p1, as p2 has higher error early on. if abs(p2) <= tolerance and abs(p1) <= tolerance: return True # Split. mid = (p0 + 3 * (p1 + p2) + p3) * .125 if abs(mid) > tolerance: return False deriv3 = (p3 + p2 - p1 - p0) * .125 return (cubic_farthest_fit_inside(p0, (p0+p1)*.5, mid-deriv3, mid, tolerance) and cubic_farthest_fit_inside(mid, mid+deriv3, (p2+p3)*.5, p3, tolerance)) def cubic_farthest_fit(p0, p1, p2, p3, tolerance): """Returns True if the cubic Bezier p entirely lies within a distance tolerance of origin, False otherwise.""" # First check p3 then p0, as p3 has higher error early on. if abs(p3) > tolerance or abs(p0) > tolerance: return False return cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance) def cubic_approx_spline(cubic, n, tolerance, _2_3=2/3): """Approximate a cubic bezier curve with a spline of n quadratics. Returns None if no quadratic approximation is found which lies entirely within a distance `tolerance` from the original curve. """ # we define 2/3 as a keyword argument so that it will be evaluated only # once but still in the scope of this function if n == 1: # Try the uniq quadratic approximating cubic that maintains # endpoint tangents. q1 = calc_intersect(*cubic) if q1 is None: return None c0 = cubic[0] c3 = cubic[3] c1 = c0 + (q1 - c0) * _2_3 c2 = c3 + (q1 - c3) * _2_3 if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance): return None return c0, q1, c3 # calculate the spline of quadratics spline = [cubic[0]] if n == 2: segments = split_cubic_into_two(*cubic) elif n == 3: segments = split_cubic_into_three(*cubic) else: segments = split_cubic_into_n(cubic[0], cubic[1], cubic[2], cubic[3], n) for i in range(len(segments)): spline.append(cubic_approx_control(segments[i], i / (n - 1))) spline.append(cubic[3]) # determine whether the spline is within the tolerance error for i in range(1, n + 1): if i == 1: q0, q1, q2 = spline[0], spline[1], (spline[1] + spline[2]) * .5 elif i == n: q0, q1, q2 = q2, spline[-2], spline[-1] else: q0, q1, q2 = q2, spline[i], (spline[i] + spline[i + 1]) * .5 c0, c1, c2, c3 = segments[i - 1] if not cubic_farthest_fit(q0 - c0, q0 + (q1 - q0) * _2_3 - c1, q2 + (q1 - q2) * _2_3 - c2, q2 - c3, tolerance): return None return spline def curve_to_quadratic(curve, max_err): """Return a quadratic spline approximating this cubic bezier. Raise 'ApproxNotFoundError' if no suitable approximation can be found with the given parameters. """ curve = [complex(*p) for p in curve] for n in range(1, MAX_N + 1): spline = cubic_approx_spline(curve, n, max_err) if spline is not None: break else: # no break: approximation not found raise ApproxNotFoundError(curve) return [(s.real, s.imag) for s in spline] def curves_to_quadratic(curves, max_errors): """Return quadratic splines approximating these cubic beziers. Raise 'ApproxNotFoundError' if no suitable approximation can be found for all curves with the given parameters. """ curves = [[complex(*p) for p in curve] for curve in curves] assert len(max_errors) == len(curves) for n in range(1, MAX_N + 1): splines = [] for c, e in zip(curves, max_errors): spline = cubic_approx_spline(c, n, e) if spline is None: break splines.append(spline) else: # done. go home break else: # no break: raise if any spline is None for c, s in zip(curves, splines): if s is None: raise ApproxNotFoundError(c) return [[(s.real, s.imag) for s in spline] for spline in splines]