"""Calculate the perimeter of a glyph.""" from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools.pens.basePen import BasePen from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT import math def _distance(p0, p1): return math.hypot(p0[0] - p1[0], p0[1] - p1[1]) def _diff(a, b): return (b[0]-a[0], b[1]-a[1]) def _dot(a, b): return a[0]*b[0] + a[1]*b[1] def _intSecAtan(x): # In : sympy.integrate(sp.sec(sp.atan(x))) # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2 return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2 class PerimeterPen(BasePen): def __init__(self, glyphset=None, tolerance=0.005): BasePen.__init__(self, glyphset) self.value = 0 self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math def _moveTo(self, p0): self.__startPoint = p0 def _lineTo(self, p1): p0 = self._getCurrentPoint() self.value += _distance(p0, p1) def _qCurveToOne(self, p1, p2): # Analytical solution to the length of a quadratic bezier. # I'll explain how I arrived at this later. p0 = self._getCurrentPoint() Len = 0 d0 = _diff(p0, p1) d1 = _diff(p1, p2) d = _diff(d0, d1) n = (d[1],-d[0]) scale = math.hypot(n[0],n[1]) if scale == 0.: self._lineTo(p2) return origDist = _dot(n,d0) if origDist == 0.: if _dot(d0,d1) > 0: self._lineTo(p2) return assert 0 # TODO handle cusps x0 = _dot(d,d0) / origDist x1 = _dot(d,d1) / origDist Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0))) self.value += Len def _addCubic(self, p0, p1, p2, p3): arch = _distance(p0, p3) box = _distance(p0, p1) + _distance(p1, p2) + _distance(p2, p3) if arch * self._mult >= box: self.value += (arch + box) * .5 else: for c in splitCubicAtT(p0,p1,p2,p3,.2,.4,.6,.8): self._addCubic(*c) def _curveToOne(self, p1, p2, p3): p0 = self._getCurrentPoint() self._addCubic(p0, p1, p2, p3) def _closePath(self): p0 = self._getCurrentPoint() if p0 != self.__startPoint: self.value += _distance(p0, self.__startPoint)