"""fontTools.misc.bezierTools.py -- tools for working with bezier path segments.""" __all__ = ["calcQuadraticBounds", "calcCubicBounds", "splitLine", "splitQuadratic", "splitCubic", "solveQuadratic", "solveCubic"] from fontTools.misc.arrayTools import calcBounds import Numeric def calcQuadraticBounds(pt1, pt2, pt3): """Return the bounding rectangle for a qudratic bezier segment. pt1 and pt3 are the "anchor" points, pt2 is the "handle".""" # convert points to Numeric arrays pt1, pt2, pt3 = Numeric.array((pt1, pt2, pt3)) # calc quadratic parameters c = pt1 b = (pt2 - c) * 2.0 a = pt3 - c - b # calc first derivative ax, ay = a * 2 bx, by = b roots = [] if ax != 0: roots.append(-bx/ax) if ay != 0: roots.append(-by/ay) points = [a*t*t + b*t + c for t in roots if 0 <= t < 1] + [pt1, pt3] return calcBounds(points) def calcCubicBounds(pt1, pt2, pt3, pt4): """Return the bounding rectangle for a cubic bezier segment. pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles".""" # convert points to Numeric arrays pt1, pt2, pt3, pt4 = Numeric.array((pt1, pt2, pt3, pt4)) # calc cubic parameters d = pt1 c = (pt2 - d) * 3.0 b = (pt3 - pt2) * 3.0 - c a = pt4 - d - c - b # calc first derivative ax, ay = a * 3.0 bx, by = b * 2.0 cx, cy = c xRoots = [t for t in solveQuadratic(ax, bx, cx) if 0 <= t < 1] yRoots = [t for t in solveQuadratic(ay, by, cy) if 0 <= t < 1] roots = xRoots + yRoots points = [(a*t*t*t + b*t*t + c * t + d) for t in roots] + [pt1, pt4] return calcBounds(points) def splitLine(pt1, pt2, where, isHorizontal): """Split the line between pt1 and pt2 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of two line segments if the line was successfully split, or a list containing the original line.""" pt1, pt2 = Numeric.array((pt1, pt2)) a = (pt2 - pt1) b = pt1 ax = a[isHorizontal] if ax == 0: return [(pt1, pt2)] t = float(where - b[isHorizontal]) / ax if 0 <= t < 1: midPt = a * t + b return [(pt1, midPt), (midPt, pt2)] else: return [(pt1, pt2)] def splitQuadratic(pt1, pt2, pt3, where, isHorizontal): """Split the quadratic curve between pt1, pt2 and pt3 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of curve segments.""" pt1, pt2, pt3 = Numeric.array((pt1, pt2, pt3)) c = pt1 b = (pt2 - c) * 2.0 a = pt3 - c - b solutions = solveQuadratic(a[isHorizontal], b[isHorizontal], c[isHorizontal] - where) solutions = [t for t in solutions if 0 <= t < 1] solutions.sort() if not solutions: return [(pt1, pt2, pt3)] segments = [] solutions.insert(0, 0.0) solutions.append(1.0) for i in range(len(solutions) - 1): t1 = solutions[i] t2 = solutions[i+1] delta = (t2 - t1) # calc new a, b and c a1 = a * delta**2 b1 = (2*a*t1 + b) * delta c1 = a*t1**2 + b*t1 + c # calc new points pt1 = c1 pt2 = (b1 * 0.5) + c1 pt3 = a1 + b1 + c1 segments.append((pt1, pt2, pt3)) return segments def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal): """Split the cubic curve between pt1, pt2, pt3 and pt4 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of curve segments.""" pt1, pt2, pt3, pt4 = Numeric.array((pt1, pt2, pt3, pt4)) d = pt1 c = (pt2 - d) * 3.0 b = (pt3 - pt2) * 3.0 - c a = pt4 - d - c - b solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where) solutions = [t for t in solutions if 0 <= t < 1] solutions.sort() if not solutions: return [(pt1, pt2, pt3, pt4)] segments = [] solutions.insert(0, 0.0) solutions.append(1.0) for i in range(len(solutions) - 1): t1 = solutions[i] t2 = solutions[i+1] delta = (t2 - t1) # calc new a, b, c and d a1 = a * delta**3 b1 = (3*a*t1 + b) * delta**2 c1 = (2*b*t1 + c + 3*a*t1**2) * delta d1 = a*t1**3 + b*t1**2 + c*t1 + d # calc new points pt1 = d1 pt2 = (c1 / 3.0) + d1 pt3 = (b1 + c1) / 3.0 + pt2 pt4 = a1 + d1 + c1 + b1 segments.append((pt1, pt2, pt3, pt4)) return segments # # Equation solvers. # from math import sqrt, acos, cos, pi def solveQuadratic(a, b, c, sqrt=sqrt): """Solve a quadratic equation where a, b and c are real. a*x*x + b*x + c = 0 This function returns a list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ if a == 0.0: if b == 0.0: # We have a non-equation; therefore, we have no valid solution roots = [] else: # We have a linear equation with 1 root. roots = [-c/b] else: # We have a true quadratic equation. Apply the quadratic formula to find two roots. DD = b*b - 4.0*a*c if DD >= 0.0: rDD = sqrt(DD) roots = [(-b+rDD)/2.0/a, (-b-rDD)/2.0/a] else: # complex roots, ignore roots = [] return roots def solveCubic(a, b, c, d, abs=abs, pow=pow, sqrt=sqrt, cos=cos, acos=acos, pi=pi): """Solve a cubic equation where a, b, c and d are real. a*x*x*x + b*x*x + c*x + d = 0 This function returns a list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ # # adapted from: # CUBIC.C - Solve a cubic polynomial # public domain by Ross Cottrell # found at: http://www.strangecreations.com/library/snippets/Cubic.C # if abs(a) < 1e-6: # don't just test for zero; for very small values of 'a' solveCubic() # returns unreliable results, so we fall back to quad. return solveQuadratic(b, c, d) a = float(a) a1 = b/a a2 = c/a a3 = d/a Q = (a1*a1 - 3.0*a2)/9.0 R = (2.0*a1*a1*a1 - 9.0*a1*a2 + 27.0*a3)/54.0 R2_Q3 = R*R - Q*Q*Q if R2_Q3 < 0: theta = acos(R/sqrt(Q*Q*Q)) rQ2 = -2.0*sqrt(Q) x0 = rQ2*cos(theta/3.0) - a1/3.0 x1 = rQ2*cos((theta+2.0*pi)/3.0) - a1/3.0 x2 = rQ2*cos((theta+4.0*pi)/3.0) - a1/3.0 return [x0, x1, x2] else: if Q == 0 and R == 0: x = 0 else: x = pow(sqrt(R2_Q3)+abs(R), 1/3.0) x = x + Q/x if R >= 0.0: x = -x x = x - a1/3.0 return [x]