# -*- coding: utf-8 -*- """Calculate the perimeter of a glyph.""" from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools.pens.basePen import BasePen from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT import math def _distance(p0, p1): return math.hypot(p0[0] - p1[0], p0[1] - p1[1]) def _dot(v1, v2): return (v1 * v2.conjugate()).real def _intSecAtan(x): # In : sympy.integrate(sp.sec(sp.atan(x))) # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2 return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2 def _split_cubic_into_two(p0, p1, p2, p3): mid = (p0 + 3 * (p1 + p2) + p3) * .125 deriv3 = (p3 + p2 - p1 - p0) * .125 return ((p0, (p0 + p1) * .5, mid - deriv3, mid), (mid, mid + deriv3, (p2 + p3) * .5, p3)) class PerimeterPen(BasePen): def __init__(self, glyphset=None, tolerance=0.005): BasePen.__init__(self, glyphset) self.value = 0 self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math # Choose which algorithm to use for quadratic and for cubic. # Quadrature is faster but has fixed error characteristic with no strong # error bound. The cutoff points are derived empirically. self._addCubic = self._addCubicQuadrature if tolerance >= 0.0015 else self._addCubicRecursive self._addQuadratic = self._addQuadraticQuadrature if tolerance >= 0.00075 else self._addQuadraticExact def _moveTo(self, p0): self.__startPoint = p0 def _closePath(self): p0 = self._getCurrentPoint() if p0 != self.__startPoint: self._lineTo(self.__startPoint) def _lineTo(self, p1): p0 = self._getCurrentPoint() self.value += _distance(p0, p1) def _addQuadraticExact(self, c0, c1, c2): # Analytical solution to the length of a quadratic bezier. # I'll explain how I arrived at this later. d0 = c1 - c0 d1 = c2 - c1 d = d1 - d0 n = d * 1j scale = abs(n) if scale == 0.: self.value += abs(c2-c0) return origDist = _dot(n,d0) if origDist == 0.: if _dot(d0,d1) >= 0: self.value += abs(c2-c0) return assert 0 # TODO handle cusps x0 = _dot(d,d0) / origDist x1 = _dot(d,d1) / origDist Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0))) self.value += Len def _addQuadraticQuadrature(self, c0, c1, c2): # Approximate length of quadratic Bezier curve using Gauss-Legendre quadrature # with n=3 points. # # This, essentially, approximates the length-of-derivative function # to be integrated with the best-matching fifth-degree polynomial # approximation of it. # #https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature # abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2), # weighted 5/18, 8/18, 5/18 respectively. v0 = abs(-0.492943519233745*c0 + 0.430331482911935*c1 + 0.0626120363218102*c2) v1 = abs(c2-c0)*0.4444444444444444 v2 = abs(-0.0626120363218102*c0 - 0.430331482911935*c1 + 0.492943519233745*c2) self.value += v0 + v1 + v2 def _qCurveToOne(self, p1, p2): p0 = self._getCurrentPoint() self._addQuadratic(complex(*p0), complex(*p1), complex(*p2)) def _addCubicRecursive(self, p0, p1, p2, p3): arch = abs(p0-p3) box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3) if arch * self._mult >= box: self.value += (arch + box) * .5 else: one,two = _split_cubic_into_two(p0,p1,p2,p3) self._addCubicRecursive(*one) self._addCubicRecursive(*two) def _addCubicQuadrature(self, c0, c1, c2, c3): # Approximate length of cubic Bezier curve using Gauss-Lobatto quadrature # with n=5 points. # # This, essentially, approximates the length-of-derivative function # to be integrated with the best-matching seventh-degree polynomial # approximation of it. # # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules # abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1), # weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively. v0 = abs(c1-c0)*.15 v1 = abs(-0.558983582205757*c0 + 0.325650248872424*c1 + 0.208983582205757*c2 + 0.024349751127576*c3) v2 = abs(c3-c0+c2-c1)*0.26666666666666666 v3 = abs(-0.024349751127576*c0 - 0.208983582205757*c1 - 0.325650248872424*c2 + 0.558983582205757*c3) v4 = abs(c3-c2)*.15 self.value += v0 + v1 + v2 + v3 + v4 def _curveToOne(self, p1, p2, p3): p0 = self._getCurrentPoint() self._addCubic(complex(*p0), complex(*p1), complex(*p2), complex(*p3))