""" Tool to find wrong contour order between different masters, and other interpolatability (or lack thereof) issues. Call as: $ fonttools varLib.interpolatable font1 font2 ... """ from fontTools.pens.basePen import AbstractPen, BasePen from fontTools.pens.pointPen import SegmentToPointPen from fontTools.pens.recordingPen import RecordingPen from fontTools.pens.statisticsPen import StatisticsPen from fontTools.pens.momentsPen import OpenContourError from collections import OrderedDict import itertools import sys def _rot_list(l, k): """Rotate list by k items forward. Ie. item at position 0 will be at position k in returned list. Negative k is allowed.""" n = len(l) k %= n if not k: return l return l[n-k:] + l[:n-k] class PerContourPen(BasePen): def __init__(self, Pen, glyphset=None): BasePen.__init__(self, glyphset) self._glyphset = glyphset self._Pen = Pen self._pen = None self.value = [] def _moveTo(self, p0): self._newItem() self._pen.moveTo(p0) def _lineTo(self, p1): self._pen.lineTo(p1) def _qCurveToOne(self, p1, p2): self._pen.qCurveTo(p1, p2) def _curveToOne(self, p1, p2, p3): self._pen.curveTo(p1, p2, p3) def _closePath(self): self._pen.closePath() self._pen = None def _endPath(self): self._pen.endPath() self._pen = None def _newItem(self): self._pen = pen = self._Pen() self.value.append(pen) class PerContourOrComponentPen(PerContourPen): def addComponent(self, glyphName, transformation): self._newItem() self.value[-1].addComponent(glyphName, transformation) class RecordingPointPen(BasePen): def __init__(self): self.value = [] def beginPath(self, identifier = None, **kwargs): pass def endPath(self) -> None: pass def addPoint(self, pt, segmentType=None): self.value.append((pt, False if segmentType is None else True)) def _vdiff(v0, v1): return tuple(b - a for a, b in zip(v0, v1)) def _vlen(vec): v = 0 for x in vec: v += x * x return v def _complex_vlen(vec): v = 0 for x in vec: v += abs(x) * abs(x) return v def _matching_cost(G, matching): return sum(G[i][j] for i, j in enumerate(matching)) def min_cost_perfect_bipartite_matching(G): n = len(G) try: from scipy.optimize import linear_sum_assignment rows, cols = linear_sum_assignment(G) assert (rows == list(range(n))).all() return list(cols), _matching_cost(G, cols) except ImportError: pass try: from munkres import Munkres cols = [None] * n for row, col in Munkres().compute(G): cols[row] = col return cols, _matching_cost(G, cols) except ImportError: pass if n > 6: raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'") # Otherwise just brute-force permutations = itertools.permutations(range(n)) best = list(next(permutations)) best_cost = _matching_cost(G, best) for p in permutations: cost = _matching_cost(G, p) if cost < best_cost: best, best_cost = list(p), cost return best, best_cost def test(glyphsets, glyphs=None, names=None): if names is None: names = glyphsets if glyphs is None: glyphs = glyphsets[0].keys() hist = [] problems = OrderedDict() def add_problem(glyphname, problem): problems.setdefault(glyphname, []).append(problem) for glyph_name in glyphs: # print() # print(glyph_name) try: allVectors = [] allNodeTypes = [] allContourIsomorphisms = [] for glyphset, name in zip(glyphsets, names): # print('.', end='') if glyph_name not in glyphset: add_problem(glyph_name, {"type": "missing", "master": name}) continue glyph = glyphset[glyph_name] perContourPen = PerContourOrComponentPen( RecordingPen, glyphset=glyphset ) try: glyph.draw(perContourPen, outputImpliedClosingLine=True) except TypeError: glyph.draw(perContourPen) contourPens = perContourPen.value del perContourPen contourVectors = [] contourIsomorphisms = [] nodeTypes = [] allNodeTypes.append(nodeTypes) allVectors.append(contourVectors) allContourIsomorphisms.append(contourIsomorphisms) for ix, contour in enumerate(contourPens): nodeVecs = tuple(instruction[0] for instruction in contour.value) nodeTypes.append(nodeVecs) stats = StatisticsPen(glyphset=glyphset) try: contour.replay(stats) except OpenContourError as e: add_problem( glyph_name, {"master": name, "contour": ix, "type": "open_path"}, ) continue size = abs(stats.area) ** 0.5 * 0.5 vector = ( int(size), int(stats.meanX), int(stats.meanY), int(stats.stddevX * 2), int(stats.stddevY * 2), int(stats.correlation * size), ) contourVectors.append(vector) # print(vector) # Check starting point if nodeVecs[0] == 'addComponent': continue assert nodeVecs[0] == 'moveTo' assert nodeVecs[-1] in ('closePath', 'endPath') points = RecordingPointPen() converter = SegmentToPointPen(points, False) contour.replay(converter) # points.value is a list of pt,bool where bool is true if on-curve and false if off-curve; # now check all rotations and mirror-rotations of the contour and build list of isomorphic # possible starting points. bits = 0 for pt,b in points.value: bits = (bits << 1) | b n = len(points.value) mask = (1 << n ) - 1 isomorphisms = [] contourIsomorphisms.append(isomorphisms) for i in range(n): b = ((bits << i) & mask) | ((bits >> (n - i))) if b == bits: isomorphisms.append(_rot_list ([complex(*pt) for pt,bl in points.value], i)) # Add mirrored rotations mirrored = list(reversed(points.value)) reversed_bits = 0 for pt,b in mirrored: reversed_bits = (reversed_bits << 1) | b for i in range(n): b = ((reversed_bits << i) & mask) | ((reversed_bits >> (n - i))) if b == bits: isomorphisms.append(_rot_list ([complex(*pt) for pt,bl in mirrored], i)) # Check each master against the next one in the list. for i, (m0, m1) in enumerate(zip(allNodeTypes[:-1], allNodeTypes[1:])): if len(m0) != len(m1): add_problem( glyph_name, { "type": "path_count", "master_1": names[i], "master_2": names[i + 1], "value_1": len(m0), "value_2": len(m1), }, ) if m0 == m1: continue for pathIx, (nodes1, nodes2) in enumerate(zip(m0, m1)): if nodes1 == nodes2: continue if len(nodes1) != len(nodes2): add_problem( glyph_name, { "type": "node_count", "path": pathIx, "master_1": names[i], "master_2": names[i + 1], "value_1": len(nodes1), "value_2": len(nodes2), }, ) continue for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)): if n1 != n2: add_problem( glyph_name, { "type": "node_incompatibility", "path": pathIx, "node": nodeIx, "master_1": names[i], "master_2": names[i + 1], "value_1": n1, "value_2": n2, }, ) continue for i, (m0, m1) in enumerate(zip(allVectors[:-1], allVectors[1:])): if len(m0) != len(m1): # We already reported this continue if not m0: continue costs = [[_vlen(_vdiff(v0, v1)) for v1 in m1] for v0 in m0] matching, matching_cost = min_cost_perfect_bipartite_matching(costs) identity_matching = list(range(len(m0))) identity_cost = sum(costs[i][i] for i in range(len(m0))) if matching != identity_matching and matching_cost < identity_cost * .95: add_problem( glyph_name, { "type": "contour_order", "master_1": names[i], "master_2": names[i + 1], "value_1": list(range(len(m0))), "value_2": matching, }, ) break for i, (m0, m1) in enumerate(zip(allContourIsomorphisms[:-1], allContourIsomorphisms[1:])): if len(m0) != len(m1): # We already reported this continue if not m0: continue for contour0,contour1 in zip(m0,m1): c0 = contour0[0] costs = [v for v in (_complex_vlen(_vdiff(c0, c1)) for c1 in contour1)] min_cost = min(costs) first_cost = costs[0] if min_cost < first_cost * .95: add_problem( glyph_name, { "type": "wrong_start_point", "master_1": names[i], "master_2": names[i + 1], }, ) except ValueError as e: add_problem( glyph_name, {"type": "math_error", "master": name, "error": e}, ) return problems def main(args=None): """Test for interpolatability issues between fonts""" import argparse parser = argparse.ArgumentParser( "fonttools varLib.interpolatable", description=main.__doc__, ) parser.add_argument( "--json", action="store_true", help="Output report in JSON format", ) parser.add_argument( "inputs", metavar="FILE", type=str, nargs="+", help="Input TTF/UFO files" ) args = parser.parse_args(args) glyphs = None # glyphs = ['uni08DB', 'uniFD76'] # glyphs = ['uni08DE', 'uni0034'] # glyphs = ['uni08DE', 'uni0034', 'uni0751', 'uni0753', 'uni0754', 'uni08A4', 'uni08A4.fina', 'uni08A5.fina'] from os.path import basename fonts = [] names = [] if len(args.inputs) == 1: if args.inputs[0].endswith('.designspace'): from fontTools.designspaceLib import DesignSpaceDocument designspace = DesignSpaceDocument.fromfile(args.inputs[0]) args.inputs = [master.path for master in designspace.sources] elif args.inputs[0].endswith('.glyphs'): from glyphsLib import GSFont, to_ufos gsfont = GSFont(args.inputs[0]) fonts.extend(to_ufos(gsfont)) names = ['%s-%s' % (f.info.familyName, f.info.styleName) for f in fonts] args.inputs = [] for filename in args.inputs: if filename.endswith(".ufo"): from fontTools.ufoLib import UFOReader fonts.append(UFOReader(filename)) else: from fontTools.ttLib import TTFont fonts.append(TTFont(filename)) names.append(basename(filename).rsplit(".", 1)[0]) if hasattr(fonts[0], 'getGlyphSet'): glyphsets = [font.getGlyphSet() for font in fonts] else: glyphsets = fonts problems = test(glyphsets, glyphs=glyphs, names=names) if args.json: import json print(json.dumps(problems)) else: for glyph, glyph_problems in problems.items(): print(f"Glyph {glyph} was not compatible: ") for p in glyph_problems: if p["type"] == "missing": print(" Glyph was missing in master %s" % p["master"]) if p["type"] == "open_path": print(" Glyph has an open path in master %s" % p["master"]) if p["type"] == "path_count": print( " Path count differs: %i in %s, %i in %s" % (p["value_1"], p["master_1"], p["value_2"], p["master_2"]) ) if p["type"] == "node_count": print( " Node count differs in path %i: %i in %s, %i in %s" % ( p["path"], p["value_1"], p["master_1"], p["value_2"], p["master_2"], ) ) if p["type"] == "node_incompatibility": print( " Node %o incompatible in path %i: %s in %s, %s in %s" % ( p["node"], p["path"], p["value_1"], p["master_1"], p["value_2"], p["master_2"], ) ) if p["type"] == "contour_order": print( " Contour order differs: %s in %s, %s in %s" % ( p["value_1"], p["master_1"], p["value_2"], p["master_2"], ) ) if p["type"] == "wrong_start_point": print( " Contour start point differs: %s, %s" % ( p["master_1"], p["master_2"], ) ) if problems: return problems if __name__ == "__main__": import sys problems = main() sys.exit(int(bool(problems)))