"""_g_l_y_f.py -- Converter classes for the 'glyf' table.""" from collections import namedtuple from fontTools.misc.py23 import * from fontTools.misc import sstruct from fontTools import ttLib from fontTools import version from fontTools.misc.textTools import safeEval, pad from fontTools.misc.arrayTools import calcBounds, calcIntBounds, pointInRect from fontTools.misc.bezierTools import calcQuadraticBounds from fontTools.misc.fixedTools import ( fixedToFloat as fi2fl, floatToFixed as fl2fi, floatToFixedToStr as fl2str, strToFixedToFloat as str2fl, otRound, ) from numbers import Number from . import DefaultTable from . import ttProgram import sys import struct import array import logging import os from fontTools.misc import xmlWriter from fontTools.misc.filenames import userNameToFileName log = logging.getLogger(__name__) # We compute the version the same as is computed in ttlib/__init__ # so that we can write 'ttLibVersion' attribute of the glyf TTX files # when glyf is written to separate files. version = ".".join(version.split('.')[:2]) # # The Apple and MS rasterizers behave differently for # scaled composite components: one does scale first and then translate # and the other does it vice versa. MS defined some flags to indicate # the difference, but it seems nobody actually _sets_ those flags. # # Funny thing: Apple seems to _only_ do their thing in the # WE_HAVE_A_SCALE (eg. Chicago) case, and not when it's WE_HAVE_AN_X_AND_Y_SCALE # (eg. Charcoal)... # SCALE_COMPONENT_OFFSET_DEFAULT = 0 # 0 == MS, 1 == Apple class table__g_l_y_f(DefaultTable.DefaultTable): # this attribute controls the amount of padding applied to glyph data upon compile. # Glyph lenghts are aligned to multiples of the specified value. # Allowed values are (0, 1, 2, 4). '0' means no padding; '1' (default) also means # no padding, except for when padding would allow to use short loca offsets. padding = 1 def decompile(self, data, ttFont): loca = ttFont['loca'] pos = int(loca[0]) nextPos = 0 noname = 0 self.glyphs = {} self.glyphOrder = glyphOrder = ttFont.getGlyphOrder() for i in range(0, len(loca)-1): try: glyphName = glyphOrder[i] except IndexError: noname = noname + 1 glyphName = 'ttxautoglyph%s' % i nextPos = int(loca[i+1]) glyphdata = data[pos:nextPos] if len(glyphdata) != (nextPos - pos): raise ttLib.TTLibError("not enough 'glyf' table data") glyph = Glyph(glyphdata) self.glyphs[glyphName] = glyph pos = nextPos if len(data) - nextPos >= 4: log.warning( "too much 'glyf' table data: expected %d, received %d bytes", nextPos, len(data)) if noname: log.warning('%s glyphs have no name', noname) if ttFont.lazy is False: # Be lazy for None and True for glyph in self.glyphs.values(): glyph.expand(self) def compile(self, ttFont): if not hasattr(self, "glyphOrder"): self.glyphOrder = ttFont.getGlyphOrder() padding = self.padding assert padding in (0, 1, 2, 4) locations = [] currentLocation = 0 dataList = [] recalcBBoxes = ttFont.recalcBBoxes for glyphName in self.glyphOrder: glyph = self.glyphs[glyphName] glyphData = glyph.compile(self, recalcBBoxes) if padding > 1: glyphData = pad(glyphData, size=padding) locations.append(currentLocation) currentLocation = currentLocation + len(glyphData) dataList.append(glyphData) locations.append(currentLocation) if padding == 1 and currentLocation < 0x20000: # See if we can pad any odd-lengthed glyphs to allow loca # table to use the short offsets. indices = [i for i,glyphData in enumerate(dataList) if len(glyphData) % 2 == 1] if indices and currentLocation + len(indices) < 0x20000: # It fits. Do it. for i in indices: dataList[i] += b'\0' currentLocation = 0 for i,glyphData in enumerate(dataList): locations[i] = currentLocation currentLocation += len(glyphData) locations[len(dataList)] = currentLocation data = bytesjoin(dataList) if 'loca' in ttFont: ttFont['loca'].set(locations) if 'maxp' in ttFont: ttFont['maxp'].numGlyphs = len(self.glyphs) if not data: # As a special case when all glyph in the font are empty, add a zero byte # to the table, so that OTS doesn’t reject it, and to make the table work # on Windows as well. # See https://github.com/khaledhosny/ots/issues/52 data = b"\0" return data def toXML(self, writer, ttFont, splitGlyphs=False): notice = ( "The xMin, yMin, xMax and yMax values\n" "will be recalculated by the compiler.") glyphNames = ttFont.getGlyphNames() if not splitGlyphs: writer.newline() writer.comment(notice) writer.newline() writer.newline() numGlyphs = len(glyphNames) if splitGlyphs: path, ext = os.path.splitext(writer.file.name) existingGlyphFiles = set() for glyphName in glyphNames: if glyphName not in self: log.warning("glyph '%s' does not exist in glyf table", glyphName) continue glyph = self[glyphName] if glyph.numberOfContours: if splitGlyphs: glyphPath = userNameToFileName( tounicode(glyphName, 'utf-8'), existingGlyphFiles, prefix=path + ".", suffix=ext) existingGlyphFiles.add(glyphPath.lower()) glyphWriter = xmlWriter.XMLWriter( glyphPath, idlefunc=writer.idlefunc, newlinestr=writer.newlinestr) glyphWriter.begintag("ttFont", ttLibVersion=version) glyphWriter.newline() glyphWriter.begintag("glyf") glyphWriter.newline() glyphWriter.comment(notice) glyphWriter.newline() writer.simpletag("TTGlyph", src=os.path.basename(glyphPath)) else: glyphWriter = writer glyphWriter.begintag('TTGlyph', [ ("name", glyphName), ("xMin", glyph.xMin), ("yMin", glyph.yMin), ("xMax", glyph.xMax), ("yMax", glyph.yMax), ]) glyphWriter.newline() glyph.toXML(glyphWriter, ttFont) glyphWriter.endtag('TTGlyph') glyphWriter.newline() if splitGlyphs: glyphWriter.endtag("glyf") glyphWriter.newline() glyphWriter.endtag("ttFont") glyphWriter.newline() glyphWriter.close() else: writer.simpletag('TTGlyph', name=glyphName) writer.comment("contains no outline data") if not splitGlyphs: writer.newline() writer.newline() def fromXML(self, name, attrs, content, ttFont): if name != "TTGlyph": return if not hasattr(self, "glyphs"): self.glyphs = {} if not hasattr(self, "glyphOrder"): self.glyphOrder = ttFont.getGlyphOrder() glyphName = attrs["name"] log.debug("unpacking glyph '%s'", glyphName) glyph = Glyph() for attr in ['xMin', 'yMin', 'xMax', 'yMax']: setattr(glyph, attr, safeEval(attrs.get(attr, '0'))) self.glyphs[glyphName] = glyph for element in content: if not isinstance(element, tuple): continue name, attrs, content = element glyph.fromXML(name, attrs, content, ttFont) if not ttFont.recalcBBoxes: glyph.compact(self, 0) def setGlyphOrder(self, glyphOrder): self.glyphOrder = glyphOrder def getGlyphName(self, glyphID): return self.glyphOrder[glyphID] def getGlyphID(self, glyphName): # XXX optimize with reverse dict!!! return self.glyphOrder.index(glyphName) def removeHinting(self): for glyph in self.glyphs.values(): glyph.removeHinting() def keys(self): return self.glyphs.keys() def has_key(self, glyphName): return glyphName in self.glyphs __contains__ = has_key def __getitem__(self, glyphName): glyph = self.glyphs[glyphName] glyph.expand(self) return glyph def __setitem__(self, glyphName, glyph): self.glyphs[glyphName] = glyph if glyphName not in self.glyphOrder: self.glyphOrder.append(glyphName) def __delitem__(self, glyphName): del self.glyphs[glyphName] self.glyphOrder.remove(glyphName) def __len__(self): assert len(self.glyphOrder) == len(self.glyphs) return len(self.glyphs) def getPhantomPoints(self, glyphName, ttFont, defaultVerticalOrigin=None): """Compute the four "phantom points" for the given glyph from its bounding box and the horizontal and vertical advance widths and sidebearings stored in the ttFont's "hmtx" and "vmtx" tables. If the ttFont doesn't contain a "vmtx" table, the hhea.ascent is used as the vertical origin, and the head.unitsPerEm as the vertical advance. The "defaultVerticalOrigin" (Optional[int]) is needed when the ttFont contains neither a "vmtx" nor an "hhea" table, as may happen with 'sparse' masters. The value should be the hhea.ascent of the default master. https://docs.microsoft.com/en-us/typography/opentype/spec/tt_instructing_glyphs#phantoms """ glyph = self[glyphName] assert glyphName in ttFont["hmtx"].metrics, ttFont["hmtx"].metrics horizontalAdvanceWidth, leftSideBearing = ttFont["hmtx"].metrics[glyphName] if not hasattr(glyph, 'xMin'): glyph.recalcBounds(self) leftSideX = glyph.xMin - leftSideBearing rightSideX = leftSideX + horizontalAdvanceWidth if "vmtx" in ttFont: verticalAdvanceWidth, topSideBearing = ttFont["vmtx"].metrics[glyphName] topSideY = topSideBearing + glyph.yMax else: # without vmtx, use ascent as vertical origin and UPEM as vertical advance # like HarfBuzz does verticalAdvanceWidth = ttFont["head"].unitsPerEm if "hhea" in ttFont: topSideY = ttFont["hhea"].ascent else: # sparse masters may not contain an hhea table; use the ascent # of the default master as the vertical origin if defaultVerticalOrigin is not None: topSideY = defaultVerticalOrigin else: log.warning( "font is missing both 'vmtx' and 'hhea' tables, " "and no 'defaultVerticalOrigin' was provided; " "the vertical phantom points may be incorrect." ) topSideY = verticalAdvanceWidth bottomSideY = topSideY - verticalAdvanceWidth return [ (leftSideX, 0), (rightSideX, 0), (0, topSideY), (0, bottomSideY), ] def getCoordinatesAndControls(self, glyphName, ttFont, defaultVerticalOrigin=None): """Return glyph coordinates and controls as expected by "gvar" table. The coordinates includes four "phantom points" for the glyph metrics, as mandated by the "gvar" spec. The glyph controls is a namedtuple with the following attributes: - numberOfContours: -1 for composite glyphs. - endPts: list of indices of end points for each contour in simple glyphs, or component indices in composite glyphs (used for IUP optimization). - flags: array of contour point flags for simple glyphs (None for composite glyphs). - components: list of base glyph names (str) for each component in composite glyphs (None for simple glyphs). The "ttFont" and "defaultVerticalOrigin" args are used to compute the "phantom points" (see "getPhantomPoints" method). Return None if the requested glyphName is not present. """ if glyphName not in self.glyphs: return None glyph = self[glyphName] if glyph.isComposite(): coords = GlyphCoordinates( [(getattr(c, 'x', 0), getattr(c, 'y', 0)) for c in glyph.components] ) controls = _GlyphControls( numberOfContours=glyph.numberOfContours, endPts=list(range(len(glyph.components))), flags=None, components=[c.glyphName for c in glyph.components], ) else: coords, endPts, flags = glyph.getCoordinates(self) coords = coords.copy() controls = _GlyphControls( numberOfContours=glyph.numberOfContours, endPts=endPts, flags=flags, components=None, ) # Add phantom points for (left, right, top, bottom) positions. phantomPoints = self.getPhantomPoints( glyphName, ttFont, defaultVerticalOrigin=defaultVerticalOrigin ) coords.extend(phantomPoints) return coords, controls def setCoordinates(self, glyphName, coord, ttFont): """Set coordinates and metrics for the given glyph. "coord" is an array of GlyphCoordinates which must include the "phantom points" as the last four coordinates. Both the horizontal/vertical advances and left/top sidebearings in "hmtx" and "vmtx" tables (if any) are updated from four phantom points and the glyph's bounding boxes. """ # TODO: Create new glyph if not already present assert glyphName in self.glyphs glyph = self[glyphName] # Handle phantom points for (left, right, top, bottom) positions. assert len(coord) >= 4 leftSideX = coord[-4][0] rightSideX = coord[-3][0] topSideY = coord[-2][1] bottomSideY = coord[-1][1] coord = coord[:-4] if glyph.isComposite(): assert len(coord) == len(glyph.components) for p, comp in zip(coord, glyph.components): if hasattr(comp, 'x'): comp.x, comp.y = p elif glyph.numberOfContours == 0: assert len(coord) == 0 else: assert len(coord) == len(glyph.coordinates) glyph.coordinates = GlyphCoordinates(coord) glyph.recalcBounds(self) horizontalAdvanceWidth = otRound(rightSideX - leftSideX) if horizontalAdvanceWidth < 0: # unlikely, but it can happen, see: # https://github.com/fonttools/fonttools/pull/1198 horizontalAdvanceWidth = 0 leftSideBearing = otRound(glyph.xMin - leftSideX) ttFont["hmtx"].metrics[glyphName] = horizontalAdvanceWidth, leftSideBearing if "vmtx" in ttFont: verticalAdvanceWidth = otRound(topSideY - bottomSideY) if verticalAdvanceWidth < 0: # unlikely but do the same as horizontal verticalAdvanceWidth = 0 topSideBearing = otRound(topSideY - glyph.yMax) ttFont["vmtx"].metrics[glyphName] = verticalAdvanceWidth, topSideBearing _GlyphControls = namedtuple( "_GlyphControls", "numberOfContours endPts flags components" ) glyphHeaderFormat = """ > # big endian numberOfContours: h xMin: h yMin: h xMax: h yMax: h """ # flags flagOnCurve = 0x01 flagXShort = 0x02 flagYShort = 0x04 flagRepeat = 0x08 flagXsame = 0x10 flagYsame = 0x20 flagOverlapSimple = 0x40 flagReserved = 0x80 # These flags are kept for XML output after decompiling the coordinates keepFlags = flagOnCurve + flagOverlapSimple _flagSignBytes = { 0: 2, flagXsame: 0, flagXShort|flagXsame: +1, flagXShort: -1, flagYsame: 0, flagYShort|flagYsame: +1, flagYShort: -1, } def flagBest(x, y, onCurve): """For a given x,y delta pair, returns the flag that packs this pair most efficiently, as well as the number of byte cost of such flag.""" flag = flagOnCurve if onCurve else 0 cost = 0 # do x if x == 0: flag = flag | flagXsame elif -255 <= x <= 255: flag = flag | flagXShort if x > 0: flag = flag | flagXsame cost += 1 else: cost += 2 # do y if y == 0: flag = flag | flagYsame elif -255 <= y <= 255: flag = flag | flagYShort if y > 0: flag = flag | flagYsame cost += 1 else: cost += 2 return flag, cost def flagFits(newFlag, oldFlag, mask): newBytes = _flagSignBytes[newFlag & mask] oldBytes = _flagSignBytes[oldFlag & mask] return newBytes == oldBytes or abs(newBytes) > abs(oldBytes) def flagSupports(newFlag, oldFlag): return ((oldFlag & flagOnCurve) == (newFlag & flagOnCurve) and flagFits(newFlag, oldFlag, flagXsame|flagXShort) and flagFits(newFlag, oldFlag, flagYsame|flagYShort)) def flagEncodeCoord(flag, mask, coord, coordBytes): byteCount = _flagSignBytes[flag & mask] if byteCount == 1: coordBytes.append(coord) elif byteCount == -1: coordBytes.append(-coord) elif byteCount == 2: coordBytes.append((coord >> 8) & 0xFF) coordBytes.append(coord & 0xFF) def flagEncodeCoords(flag, x, y, xBytes, yBytes): flagEncodeCoord(flag, flagXsame|flagXShort, x, xBytes) flagEncodeCoord(flag, flagYsame|flagYShort, y, yBytes) ARG_1_AND_2_ARE_WORDS = 0x0001 # if set args are words otherwise they are bytes ARGS_ARE_XY_VALUES = 0x0002 # if set args are xy values, otherwise they are points ROUND_XY_TO_GRID = 0x0004 # for the xy values if above is true WE_HAVE_A_SCALE = 0x0008 # Sx = Sy, otherwise scale == 1.0 NON_OVERLAPPING = 0x0010 # set to same value for all components (obsolete!) MORE_COMPONENTS = 0x0020 # indicates at least one more glyph after this one WE_HAVE_AN_X_AND_Y_SCALE = 0x0040 # Sx, Sy WE_HAVE_A_TWO_BY_TWO = 0x0080 # t00, t01, t10, t11 WE_HAVE_INSTRUCTIONS = 0x0100 # instructions follow USE_MY_METRICS = 0x0200 # apply these metrics to parent glyph OVERLAP_COMPOUND = 0x0400 # used by Apple in GX fonts SCALED_COMPONENT_OFFSET = 0x0800 # composite designed to have the component offset scaled (designed for Apple) UNSCALED_COMPONENT_OFFSET = 0x1000 # composite designed not to have the component offset scaled (designed for MS) CompositeMaxpValues = namedtuple('CompositeMaxpValues', ['nPoints', 'nContours', 'maxComponentDepth']) class Glyph(object): def __init__(self, data=""): if not data: # empty char self.numberOfContours = 0 return self.data = data def compact(self, glyfTable, recalcBBoxes=True): data = self.compile(glyfTable, recalcBBoxes) self.__dict__.clear() self.data = data def expand(self, glyfTable): if not hasattr(self, "data"): # already unpacked return if not self.data: # empty char del self.data self.numberOfContours = 0 return dummy, data = sstruct.unpack2(glyphHeaderFormat, self.data, self) del self.data # Some fonts (eg. Neirizi.ttf) have a 0 for numberOfContours in # some glyphs; decompileCoordinates assumes that there's at least # one, so short-circuit here. if self.numberOfContours == 0: return if self.isComposite(): self.decompileComponents(data, glyfTable) else: self.decompileCoordinates(data) def compile(self, glyfTable, recalcBBoxes=True): if hasattr(self, "data"): if recalcBBoxes: # must unpack glyph in order to recalculate bounding box self.expand(glyfTable) else: return self.data if self.numberOfContours == 0: return "" if recalcBBoxes: self.recalcBounds(glyfTable) data = sstruct.pack(glyphHeaderFormat, self) if self.isComposite(): data = data + self.compileComponents(glyfTable) else: data = data + self.compileCoordinates() return data def toXML(self, writer, ttFont): if self.isComposite(): for compo in self.components: compo.toXML(writer, ttFont) haveInstructions = hasattr(self, "program") else: last = 0 for i in range(self.numberOfContours): writer.begintag("contour") writer.newline() for j in range(last, self.endPtsOfContours[i] + 1): attrs = [ ("x", self.coordinates[j][0]), ("y", self.coordinates[j][1]), ("on", self.flags[j] & flagOnCurve), ] if self.flags[j] & flagOverlapSimple: # Apple's rasterizer uses flagOverlapSimple in the first contour/first pt to flag glyphs that contain overlapping contours attrs.append(("overlap", 1)) writer.simpletag("pt", attrs) writer.newline() last = self.endPtsOfContours[i] + 1 writer.endtag("contour") writer.newline() haveInstructions = self.numberOfContours > 0 if haveInstructions: if self.program: writer.begintag("instructions") writer.newline() self.program.toXML(writer, ttFont) writer.endtag("instructions") else: writer.simpletag("instructions") writer.newline() def fromXML(self, name, attrs, content, ttFont): if name == "contour": if self.numberOfContours < 0: raise ttLib.TTLibError("can't mix composites and contours in glyph") self.numberOfContours = self.numberOfContours + 1 coordinates = GlyphCoordinates() flags = [] for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name != "pt": continue # ignore anything but "pt" coordinates.append((safeEval(attrs["x"]), safeEval(attrs["y"]))) flag = not not safeEval(attrs["on"]) if "overlap" in attrs and bool(safeEval(attrs["overlap"])): flag |= flagOverlapSimple flags.append(flag) flags = array.array("B", flags) if not hasattr(self, "coordinates"): self.coordinates = coordinates self.flags = flags self.endPtsOfContours = [len(coordinates)-1] else: self.coordinates.extend (coordinates) self.flags.extend(flags) self.endPtsOfContours.append(len(self.coordinates)-1) elif name == "component": if self.numberOfContours > 0: raise ttLib.TTLibError("can't mix composites and contours in glyph") self.numberOfContours = -1 if not hasattr(self, "components"): self.components = [] component = GlyphComponent() self.components.append(component) component.fromXML(name, attrs, content, ttFont) elif name == "instructions": self.program = ttProgram.Program() for element in content: if not isinstance(element, tuple): continue name, attrs, content = element self.program.fromXML(name, attrs, content, ttFont) def getCompositeMaxpValues(self, glyfTable, maxComponentDepth=1): assert self.isComposite() nContours = 0 nPoints = 0 for compo in self.components: baseGlyph = glyfTable[compo.glyphName] if baseGlyph.numberOfContours == 0: continue elif baseGlyph.numberOfContours > 0: nP, nC = baseGlyph.getMaxpValues() else: nP, nC, maxComponentDepth = baseGlyph.getCompositeMaxpValues( glyfTable, maxComponentDepth + 1) nPoints = nPoints + nP nContours = nContours + nC return CompositeMaxpValues(nPoints, nContours, maxComponentDepth) def getMaxpValues(self): assert self.numberOfContours > 0 return len(self.coordinates), len(self.endPtsOfContours) def decompileComponents(self, data, glyfTable): self.components = [] more = 1 haveInstructions = 0 while more: component = GlyphComponent() more, haveInstr, data = component.decompile(data, glyfTable) haveInstructions = haveInstructions | haveInstr self.components.append(component) if haveInstructions: numInstructions, = struct.unpack(">h", data[:2]) data = data[2:] self.program = ttProgram.Program() self.program.fromBytecode(data[:numInstructions]) data = data[numInstructions:] if len(data) >= 4: log.warning( "too much glyph data at the end of composite glyph: %d excess bytes", len(data)) def decompileCoordinates(self, data): endPtsOfContours = array.array("h") endPtsOfContours.frombytes(data[:2*self.numberOfContours]) if sys.byteorder != "big": endPtsOfContours.byteswap() self.endPtsOfContours = endPtsOfContours.tolist() data = data[2*self.numberOfContours:] instructionLength, = struct.unpack(">h", data[:2]) data = data[2:] self.program = ttProgram.Program() self.program.fromBytecode(data[:instructionLength]) data = data[instructionLength:] nCoordinates = self.endPtsOfContours[-1] + 1 flags, xCoordinates, yCoordinates = \ self.decompileCoordinatesRaw(nCoordinates, data) # fill in repetitions and apply signs self.coordinates = coordinates = GlyphCoordinates.zeros(nCoordinates) xIndex = 0 yIndex = 0 for i in range(nCoordinates): flag = flags[i] # x coordinate if flag & flagXShort: if flag & flagXsame: x = xCoordinates[xIndex] else: x = -xCoordinates[xIndex] xIndex = xIndex + 1 elif flag & flagXsame: x = 0 else: x = xCoordinates[xIndex] xIndex = xIndex + 1 # y coordinate if flag & flagYShort: if flag & flagYsame: y = yCoordinates[yIndex] else: y = -yCoordinates[yIndex] yIndex = yIndex + 1 elif flag & flagYsame: y = 0 else: y = yCoordinates[yIndex] yIndex = yIndex + 1 coordinates[i] = (x, y) assert xIndex == len(xCoordinates) assert yIndex == len(yCoordinates) coordinates.relativeToAbsolute() # discard all flags except "keepFlags" self.flags = array.array("B", (f & keepFlags for f in flags)) def decompileCoordinatesRaw(self, nCoordinates, data): # unpack flags and prepare unpacking of coordinates flags = array.array("B", [0] * nCoordinates) # Warning: deep Python trickery going on. We use the struct module to unpack # the coordinates. We build a format string based on the flags, so we can # unpack the coordinates in one struct.unpack() call. xFormat = ">" # big endian yFormat = ">" # big endian i = j = 0 while True: flag = byteord(data[i]) i = i + 1 repeat = 1 if flag & flagRepeat: repeat = byteord(data[i]) + 1 i = i + 1 for k in range(repeat): if flag & flagXShort: xFormat = xFormat + 'B' elif not (flag & flagXsame): xFormat = xFormat + 'h' if flag & flagYShort: yFormat = yFormat + 'B' elif not (flag & flagYsame): yFormat = yFormat + 'h' flags[j] = flag j = j + 1 if j >= nCoordinates: break assert j == nCoordinates, "bad glyph flags" data = data[i:] # unpack raw coordinates, krrrrrr-tching! xDataLen = struct.calcsize(xFormat) yDataLen = struct.calcsize(yFormat) if len(data) - (xDataLen + yDataLen) >= 4: log.warning( "too much glyph data: %d excess bytes", len(data) - (xDataLen + yDataLen)) xCoordinates = struct.unpack(xFormat, data[:xDataLen]) yCoordinates = struct.unpack(yFormat, data[xDataLen:xDataLen+yDataLen]) return flags, xCoordinates, yCoordinates def compileComponents(self, glyfTable): data = b"" lastcomponent = len(self.components) - 1 more = 1 haveInstructions = 0 for i in range(len(self.components)): if i == lastcomponent: haveInstructions = hasattr(self, "program") more = 0 compo = self.components[i] data = data + compo.compile(more, haveInstructions, glyfTable) if haveInstructions: instructions = self.program.getBytecode() data = data + struct.pack(">h", len(instructions)) + instructions return data def compileCoordinates(self): assert len(self.coordinates) == len(self.flags) data = [] endPtsOfContours = array.array("h", self.endPtsOfContours) if sys.byteorder != "big": endPtsOfContours.byteswap() data.append(endPtsOfContours.tobytes()) instructions = self.program.getBytecode() data.append(struct.pack(">h", len(instructions))) data.append(instructions) deltas = self.coordinates.copy() if deltas.isFloat(): # Warn? deltas.toInt() deltas.absoluteToRelative() # TODO(behdad): Add a configuration option for this? deltas = self.compileDeltasGreedy(self.flags, deltas) #deltas = self.compileDeltasOptimal(self.flags, deltas) data.extend(deltas) return bytesjoin(data) def compileDeltasGreedy(self, flags, deltas): # Implements greedy algorithm for packing coordinate deltas: # uses shortest representation one coordinate at a time. compressedflags = [] xPoints = [] yPoints = [] lastflag = None repeat = 0 for flag,(x,y) in zip(flags, deltas): # Oh, the horrors of TrueType # do x if x == 0: flag = flag | flagXsame elif -255 <= x <= 255: flag = flag | flagXShort if x > 0: flag = flag | flagXsame else: x = -x xPoints.append(bytechr(x)) else: xPoints.append(struct.pack(">h", x)) # do y if y == 0: flag = flag | flagYsame elif -255 <= y <= 255: flag = flag | flagYShort if y > 0: flag = flag | flagYsame else: y = -y yPoints.append(bytechr(y)) else: yPoints.append(struct.pack(">h", y)) # handle repeating flags if flag == lastflag and repeat != 255: repeat = repeat + 1 if repeat == 1: compressedflags.append(flag) else: compressedflags[-2] = flag | flagRepeat compressedflags[-1] = repeat else: repeat = 0 compressedflags.append(flag) lastflag = flag compressedFlags = array.array("B", compressedflags).tobytes() compressedXs = bytesjoin(xPoints) compressedYs = bytesjoin(yPoints) return (compressedFlags, compressedXs, compressedYs) def compileDeltasOptimal(self, flags, deltas): # Implements optimal, dynaic-programming, algorithm for packing coordinate # deltas. The savings are negligible :(. candidates = [] bestTuple = None bestCost = 0 repeat = 0 for flag,(x,y) in zip(flags, deltas): # Oh, the horrors of TrueType flag, coordBytes = flagBest(x, y, flag) bestCost += 1 + coordBytes newCandidates = [(bestCost, bestTuple, flag, coordBytes), (bestCost+1, bestTuple, (flag|flagRepeat), coordBytes)] for lastCost,lastTuple,lastFlag,coordBytes in candidates: if lastCost + coordBytes <= bestCost + 1 and (lastFlag & flagRepeat) and (lastFlag < 0xff00) and flagSupports(lastFlag, flag): if (lastFlag & 0xFF) == (flag|flagRepeat) and lastCost == bestCost + 1: continue newCandidates.append((lastCost + coordBytes, lastTuple, lastFlag+256, coordBytes)) candidates = newCandidates bestTuple = min(candidates, key=lambda t:t[0]) bestCost = bestTuple[0] flags = [] while bestTuple: cost, bestTuple, flag, coordBytes = bestTuple flags.append(flag) flags.reverse() compressedFlags = array.array("B") compressedXs = array.array("B") compressedYs = array.array("B") coords = iter(deltas) ff = [] for flag in flags: repeatCount, flag = flag >> 8, flag & 0xFF compressedFlags.append(flag) if flag & flagRepeat: assert(repeatCount > 0) compressedFlags.append(repeatCount) else: assert(repeatCount == 0) for i in range(1 + repeatCount): x,y = next(coords) flagEncodeCoords(flag, x, y, compressedXs, compressedYs) ff.append(flag) try: next(coords) raise Exception("internal error") except StopIteration: pass compressedFlags = compressedFlags.tobytes() compressedXs = compressedXs.tobytes() compressedYs = compressedYs.tobytes() return (compressedFlags, compressedXs, compressedYs) def recalcBounds(self, glyfTable): coords, endPts, flags = self.getCoordinates(glyfTable) if len(coords) > 0: if 0: # This branch calculates exact glyph outline bounds # analytically, handling cases without on-curve # extremas, etc. However, the glyf table header # simply says that the bounds should be min/max x/y # "for coordinate data", so I suppose that means no # fancy thing here, just get extremas of all coord # points (on and off). As such, this branch is # disabled. # Collect on-curve points onCurveCoords = [coords[j] for j in range(len(coords)) if flags[j] & flagOnCurve] # Add implicit on-curve points start = 0 for end in endPts: last = end for j in range(start, end + 1): if not ((flags[j] | flags[last]) & flagOnCurve): x = (coords[last][0] + coords[j][0]) / 2 y = (coords[last][1] + coords[j][1]) / 2 onCurveCoords.append((x,y)) last = j start = end + 1 # Add bounds for curves without an explicit extrema start = 0 for end in endPts: last = end for j in range(start, end + 1): if not (flags[j] & flagOnCurve): next = j + 1 if j < end else start bbox = calcBounds([coords[last], coords[next]]) if not pointInRect(coords[j], bbox): # Ouch! log.warning("Outline has curve with implicit extrema.") # Ouch! Find analytical curve bounds. pthis = coords[j] plast = coords[last] if not (flags[last] & flagOnCurve): plast = ((pthis[0]+plast[0])/2, (pthis[1]+plast[1])/2) pnext = coords[next] if not (flags[next] & flagOnCurve): pnext = ((pthis[0]+pnext[0])/2, (pthis[1]+pnext[1])/2) bbox = calcQuadraticBounds(plast, pthis, pnext) onCurveCoords.append((bbox[0],bbox[1])) onCurveCoords.append((bbox[2],bbox[3])) last = j start = end + 1 self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(onCurveCoords) else: self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(coords) else: self.xMin, self.yMin, self.xMax, self.yMax = (0, 0, 0, 0) def isComposite(self): """Can be called on compact or expanded glyph.""" if hasattr(self, "data") and self.data: return struct.unpack(">h", self.data[:2])[0] == -1 else: return self.numberOfContours == -1 def __getitem__(self, componentIndex): if not self.isComposite(): raise ttLib.TTLibError("can't use glyph as sequence") return self.components[componentIndex] def getCoordinates(self, glyfTable): if self.numberOfContours > 0: return self.coordinates, self.endPtsOfContours, self.flags elif self.isComposite(): # it's a composite allCoords = GlyphCoordinates() allFlags = array.array("B") allEndPts = [] for compo in self.components: g = glyfTable[compo.glyphName] try: coordinates, endPts, flags = g.getCoordinates(glyfTable) except RecursionError: raise ttLib.TTLibError("glyph '%s' contains a recursive component reference" % compo.glyphName) coordinates = GlyphCoordinates(coordinates) if hasattr(compo, "firstPt"): # component uses two reference points: we apply the transform _before_ # computing the offset between the points if hasattr(compo, "transform"): coordinates.transform(compo.transform) x1,y1 = allCoords[compo.firstPt] x2,y2 = coordinates[compo.secondPt] move = x1-x2, y1-y2 coordinates.translate(move) else: # component uses XY offsets move = compo.x, compo.y if not hasattr(compo, "transform"): coordinates.translate(move) else: apple_way = compo.flags & SCALED_COMPONENT_OFFSET ms_way = compo.flags & UNSCALED_COMPONENT_OFFSET assert not (apple_way and ms_way) if not (apple_way or ms_way): scale_component_offset = SCALE_COMPONENT_OFFSET_DEFAULT # see top of this file else: scale_component_offset = apple_way if scale_component_offset: # the Apple way: first move, then scale (ie. scale the component offset) coordinates.translate(move) coordinates.transform(compo.transform) else: # the MS way: first scale, then move coordinates.transform(compo.transform) coordinates.translate(move) offset = len(allCoords) allEndPts.extend(e + offset for e in endPts) allCoords.extend(coordinates) allFlags.extend(flags) return allCoords, allEndPts, allFlags else: return GlyphCoordinates(), [], array.array("B") def getComponentNames(self, glyfTable): if not hasattr(self, "data"): if self.isComposite(): return [c.glyphName for c in self.components] else: return [] # Extract components without expanding glyph if not self.data or struct.unpack(">h", self.data[:2])[0] >= 0: return [] # Not composite data = self.data i = 10 components = [] more = 1 while more: flags, glyphID = struct.unpack(">HH", data[i:i+4]) i += 4 flags = int(flags) components.append(glyfTable.getGlyphName(int(glyphID))) if flags & ARG_1_AND_2_ARE_WORDS: i += 4 else: i += 2 if flags & WE_HAVE_A_SCALE: i += 2 elif flags & WE_HAVE_AN_X_AND_Y_SCALE: i += 4 elif flags & WE_HAVE_A_TWO_BY_TWO: i += 8 more = flags & MORE_COMPONENTS return components def trim(self, remove_hinting=False): """ Remove padding and, if requested, hinting, from a glyph. This works on both expanded and compacted glyphs, without expanding it.""" if not hasattr(self, "data"): if remove_hinting: if self.isComposite(): if hasattr(self, "program"): del self.program else: self.program = ttProgram.Program() self.program.fromBytecode([]) # No padding to trim. return if not self.data: return numContours = struct.unpack(">h", self.data[:2])[0] data = array.array("B", self.data) i = 10 if numContours >= 0: i += 2 * numContours # endPtsOfContours nCoordinates = ((data[i-2] << 8) | data[i-1]) + 1 instructionLen = (data[i] << 8) | data[i+1] if remove_hinting: # Zero instruction length data[i] = data [i+1] = 0 i += 2 if instructionLen: # Splice it out data = data[:i] + data[i+instructionLen:] instructionLen = 0 else: i += 2 + instructionLen coordBytes = 0 j = 0 while True: flag = data[i] i = i + 1 repeat = 1 if flag & flagRepeat: repeat = data[i] + 1 i = i + 1 xBytes = yBytes = 0 if flag & flagXShort: xBytes = 1 elif not (flag & flagXsame): xBytes = 2 if flag & flagYShort: yBytes = 1 elif not (flag & flagYsame): yBytes = 2 coordBytes += (xBytes + yBytes) * repeat j += repeat if j >= nCoordinates: break assert j == nCoordinates, "bad glyph flags" i += coordBytes # Remove padding data = data[:i] else: more = 1 we_have_instructions = False while more: flags =(data[i] << 8) | data[i+1] if remove_hinting: flags &= ~WE_HAVE_INSTRUCTIONS if flags & WE_HAVE_INSTRUCTIONS: we_have_instructions = True data[i+0] = flags >> 8 data[i+1] = flags & 0xFF i += 4 flags = int(flags) if flags & ARG_1_AND_2_ARE_WORDS: i += 4 else: i += 2 if flags & WE_HAVE_A_SCALE: i += 2 elif flags & WE_HAVE_AN_X_AND_Y_SCALE: i += 4 elif flags & WE_HAVE_A_TWO_BY_TWO: i += 8 more = flags & MORE_COMPONENTS if we_have_instructions: instructionLen = (data[i] << 8) | data[i+1] i += 2 + instructionLen # Remove padding data = data[:i] self.data = data.tobytes() def removeHinting(self): self.trim (remove_hinting=True) def draw(self, pen, glyfTable, offset=0): if self.isComposite(): for component in self.components: glyphName, transform = component.getComponentInfo() pen.addComponent(glyphName, transform) return coordinates, endPts, flags = self.getCoordinates(glyfTable) if offset: coordinates = coordinates.copy() coordinates.translate((offset, 0)) start = 0 for end in endPts: end = end + 1 contour = coordinates[start:end] cFlags = [flagOnCurve & f for f in flags[start:end]] start = end if 1 not in cFlags: # There is not a single on-curve point on the curve, # use pen.qCurveTo's special case by specifying None # as the on-curve point. contour.append(None) pen.qCurveTo(*contour) else: # Shuffle the points so that contour the is guaranteed # to *end* in an on-curve point, which we'll use for # the moveTo. firstOnCurve = cFlags.index(1) + 1 contour = contour[firstOnCurve:] + contour[:firstOnCurve] cFlags = cFlags[firstOnCurve:] + cFlags[:firstOnCurve] pen.moveTo(contour[-1]) while contour: nextOnCurve = cFlags.index(1) + 1 if nextOnCurve == 1: # Skip a final lineTo(), as it is implied by # pen.closePath() if len(contour) > 1: pen.lineTo(contour[0]) else: pen.qCurveTo(*contour[:nextOnCurve]) contour = contour[nextOnCurve:] cFlags = cFlags[nextOnCurve:] pen.closePath() def drawPoints(self, pen, glyfTable, offset=0): """Draw the glyph using the supplied pointPen. Opposed to Glyph.draw(), this will not change the point indices. """ if self.isComposite(): for component in self.components: glyphName, transform = component.getComponentInfo() pen.addComponent(glyphName, transform) return coordinates, endPts, flags = self.getCoordinates(glyfTable) if offset: coordinates = coordinates.copy() coordinates.translate((offset, 0)) start = 0 for end in endPts: end = end + 1 contour = coordinates[start:end] cFlags = flags[start:end] start = end pen.beginPath() # Start with the appropriate segment type based on the final segment segmentType = "line" if cFlags[-1] == 1 else "qcurve" for i, pt in enumerate(contour): if cFlags[i] & flagOnCurve == 1: pen.addPoint(pt, segmentType=segmentType) segmentType = "line" else: pen.addPoint(pt) segmentType = "qcurve" pen.endPath() def __eq__(self, other): if type(self) != type(other): return NotImplemented return self.__dict__ == other.__dict__ def __ne__(self, other): result = self.__eq__(other) return result if result is NotImplemented else not result class GlyphComponent(object): def __init__(self): pass def getComponentInfo(self): """Return the base glyph name and a transform.""" # XXX Ignoring self.firstPt & self.lastpt for now: I need to implement # something equivalent in fontTools.objects.glyph (I'd rather not # convert it to an absolute offset, since it is valuable information). # This method will now raise "AttributeError: x" on glyphs that use # this TT feature. if hasattr(self, "transform"): [[xx, xy], [yx, yy]] = self.transform trans = (xx, xy, yx, yy, self.x, self.y) else: trans = (1, 0, 0, 1, self.x, self.y) return self.glyphName, trans def decompile(self, data, glyfTable): flags, glyphID = struct.unpack(">HH", data[:4]) self.flags = int(flags) glyphID = int(glyphID) self.glyphName = glyfTable.getGlyphName(int(glyphID)) data = data[4:] if self.flags & ARG_1_AND_2_ARE_WORDS: if self.flags & ARGS_ARE_XY_VALUES: self.x, self.y = struct.unpack(">hh", data[:4]) else: x, y = struct.unpack(">HH", data[:4]) self.firstPt, self.secondPt = int(x), int(y) data = data[4:] else: if self.flags & ARGS_ARE_XY_VALUES: self.x, self.y = struct.unpack(">bb", data[:2]) else: x, y = struct.unpack(">BB", data[:2]) self.firstPt, self.secondPt = int(x), int(y) data = data[2:] if self.flags & WE_HAVE_A_SCALE: scale, = struct.unpack(">h", data[:2]) self.transform = [[fi2fl(scale,14), 0], [0, fi2fl(scale,14)]] # fixed 2.14 data = data[2:] elif self.flags & WE_HAVE_AN_X_AND_Y_SCALE: xscale, yscale = struct.unpack(">hh", data[:4]) self.transform = [[fi2fl(xscale,14), 0], [0, fi2fl(yscale,14)]] # fixed 2.14 data = data[4:] elif self.flags & WE_HAVE_A_TWO_BY_TWO: (xscale, scale01, scale10, yscale) = struct.unpack(">hhhh", data[:8]) self.transform = [[fi2fl(xscale,14), fi2fl(scale01,14)], [fi2fl(scale10,14), fi2fl(yscale,14)]] # fixed 2.14 data = data[8:] more = self.flags & MORE_COMPONENTS haveInstructions = self.flags & WE_HAVE_INSTRUCTIONS self.flags = self.flags & (ROUND_XY_TO_GRID | USE_MY_METRICS | SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET | NON_OVERLAPPING | OVERLAP_COMPOUND) return more, haveInstructions, data def compile(self, more, haveInstructions, glyfTable): data = b"" # reset all flags we will calculate ourselves flags = self.flags & (ROUND_XY_TO_GRID | USE_MY_METRICS | SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET | NON_OVERLAPPING | OVERLAP_COMPOUND) if more: flags = flags | MORE_COMPONENTS if haveInstructions: flags = flags | WE_HAVE_INSTRUCTIONS if hasattr(self, "firstPt"): if (0 <= self.firstPt <= 255) and (0 <= self.secondPt <= 255): data = data + struct.pack(">BB", self.firstPt, self.secondPt) else: data = data + struct.pack(">HH", self.firstPt, self.secondPt) flags = flags | ARG_1_AND_2_ARE_WORDS else: x = otRound(self.x) y = otRound(self.y) flags = flags | ARGS_ARE_XY_VALUES if (-128 <= x <= 127) and (-128 <= y <= 127): data = data + struct.pack(">bb", x, y) else: data = data + struct.pack(">hh", x, y) flags = flags | ARG_1_AND_2_ARE_WORDS if hasattr(self, "transform"): transform = [[fl2fi(x,14) for x in row] for row in self.transform] if transform[0][1] or transform[1][0]: flags = flags | WE_HAVE_A_TWO_BY_TWO data = data + struct.pack(">hhhh", transform[0][0], transform[0][1], transform[1][0], transform[1][1]) elif transform[0][0] != transform[1][1]: flags = flags | WE_HAVE_AN_X_AND_Y_SCALE data = data + struct.pack(">hh", transform[0][0], transform[1][1]) else: flags = flags | WE_HAVE_A_SCALE data = data + struct.pack(">h", transform[0][0]) glyphID = glyfTable.getGlyphID(self.glyphName) return struct.pack(">HH", flags, glyphID) + data def toXML(self, writer, ttFont): attrs = [("glyphName", self.glyphName)] if not hasattr(self, "firstPt"): attrs = attrs + [("x", self.x), ("y", self.y)] else: attrs = attrs + [("firstPt", self.firstPt), ("secondPt", self.secondPt)] if hasattr(self, "transform"): transform = self.transform if transform[0][1] or transform[1][0]: attrs = attrs + [ ("scalex", fl2str(transform[0][0], 14)), ("scale01", fl2str(transform[0][1], 14)), ("scale10", fl2str(transform[1][0], 14)), ("scaley", fl2str(transform[1][1], 14)), ] elif transform[0][0] != transform[1][1]: attrs = attrs + [ ("scalex", fl2str(transform[0][0], 14)), ("scaley", fl2str(transform[1][1], 14)), ] else: attrs = attrs + [("scale", fl2str(transform[0][0], 14))] attrs = attrs + [("flags", hex(self.flags))] writer.simpletag("component", attrs) writer.newline() def fromXML(self, name, attrs, content, ttFont): self.glyphName = attrs["glyphName"] if "firstPt" in attrs: self.firstPt = safeEval(attrs["firstPt"]) self.secondPt = safeEval(attrs["secondPt"]) else: self.x = safeEval(attrs["x"]) self.y = safeEval(attrs["y"]) if "scale01" in attrs: scalex = str2fl(attrs["scalex"], 14) scale01 = str2fl(attrs["scale01"], 14) scale10 = str2fl(attrs["scale10"], 14) scaley = str2fl(attrs["scaley"], 14) self.transform = [[scalex, scale01], [scale10, scaley]] elif "scalex" in attrs: scalex = str2fl(attrs["scalex"], 14) scaley = str2fl(attrs["scaley"], 14) self.transform = [[scalex, 0], [0, scaley]] elif "scale" in attrs: scale = str2fl(attrs["scale"], 14) self.transform = [[scale, 0], [0, scale]] self.flags = safeEval(attrs["flags"]) def __eq__(self, other): if type(self) != type(other): return NotImplemented return self.__dict__ == other.__dict__ def __ne__(self, other): result = self.__eq__(other) return result if result is NotImplemented else not result class GlyphCoordinates(object): def __init__(self, iterable=[], typecode="h"): self._a = array.array(typecode) self.extend(iterable) @property def array(self): return self._a def isFloat(self): return self._a.typecode == 'd' def _ensureFloat(self): if self.isFloat(): return # The conversion to list() is to work around Jython bug self._a = array.array("d", list(self._a)) def _checkFloat(self, p): if self.isFloat(): return p if any(v > 0x7FFF or v < -0x8000 for v in p): self._ensureFloat() return p if any(isinstance(v, float) for v in p): p = [int(v) if int(v) == v else v for v in p] if any(isinstance(v, float) for v in p): self._ensureFloat() return p @staticmethod def zeros(count): return GlyphCoordinates([(0,0)] * count) def copy(self): c = GlyphCoordinates(typecode=self._a.typecode) c._a.extend(self._a) return c def __len__(self): return len(self._a) // 2 def __getitem__(self, k): if isinstance(k, slice): indices = range(*k.indices(len(self))) return [self[i] for i in indices] return self._a[2*k],self._a[2*k+1] def __setitem__(self, k, v): if isinstance(k, slice): indices = range(*k.indices(len(self))) # XXX This only works if len(v) == len(indices) for j,i in enumerate(indices): self[i] = v[j] return v = self._checkFloat(v) self._a[2*k],self._a[2*k+1] = v def __delitem__(self, i): i = (2*i) % len(self._a) del self._a[i] del self._a[i] def __repr__(self): return 'GlyphCoordinates(['+','.join(str(c) for c in self)+'])' def append(self, p): p = self._checkFloat(p) self._a.extend(tuple(p)) def extend(self, iterable): for p in iterable: p = self._checkFloat(p) self._a.extend(p) def toInt(self): if not self.isFloat(): return a = array.array("h") for n in self._a: a.append(otRound(n)) self._a = a def relativeToAbsolute(self): a = self._a x,y = 0,0 for i in range(len(a) // 2): x = a[2*i ] + x y = a[2*i+1] + y self[i] = (x, y) def absoluteToRelative(self): a = self._a x,y = 0,0 for i in range(len(a) // 2): dx = a[2*i ] - x dy = a[2*i+1] - y x = a[2*i ] y = a[2*i+1] self[i] = (dx, dy) def translate(self, p): """ >>> GlyphCoordinates([(1,2)]).translate((.5,0)) """ (x,y) = self._checkFloat(p) a = self._a for i in range(len(a) // 2): self[i] = (a[2*i] + x, a[2*i+1] + y) def scale(self, p): """ >>> GlyphCoordinates([(1,2)]).scale((.5,0)) """ (x,y) = self._checkFloat(p) a = self._a for i in range(len(a) // 2): self[i] = (a[2*i] * x, a[2*i+1] * y) def transform(self, t): """ >>> GlyphCoordinates([(1,2)]).transform(((.5,0),(.2,.5))) """ a = self._a for i in range(len(a) // 2): x = a[2*i ] y = a[2*i+1] px = x * t[0][0] + y * t[1][0] py = x * t[0][1] + y * t[1][1] self[i] = (px, py) def __eq__(self, other): """ >>> g = GlyphCoordinates([(1,2)]) >>> g2 = GlyphCoordinates([(1.0,2)]) >>> g3 = GlyphCoordinates([(1.5,2)]) >>> g == g2 True >>> g == g3 False >>> g2 == g3 False """ if type(self) != type(other): return NotImplemented return self._a == other._a def __ne__(self, other): """ >>> g = GlyphCoordinates([(1,2)]) >>> g2 = GlyphCoordinates([(1.0,2)]) >>> g3 = GlyphCoordinates([(1.5,2)]) >>> g != g2 False >>> g != g3 True >>> g2 != g3 True """ result = self.__eq__(other) return result if result is NotImplemented else not result # Math operations def __pos__(self): """ >>> g = GlyphCoordinates([(1,2)]) >>> g GlyphCoordinates([(1, 2)]) >>> g2 = +g >>> g2 GlyphCoordinates([(1, 2)]) >>> g2.translate((1,0)) >>> g2 GlyphCoordinates([(2, 2)]) >>> g GlyphCoordinates([(1, 2)]) """ return self.copy() def __neg__(self): """ >>> g = GlyphCoordinates([(1,2)]) >>> g GlyphCoordinates([(1, 2)]) >>> g2 = -g >>> g2 GlyphCoordinates([(-1, -2)]) >>> g GlyphCoordinates([(1, 2)]) """ r = self.copy() a = r._a for i in range(len(a)): a[i] = -a[i] return r def __round__(self): """ Note: This is Python 3 only. Python 2 does not call __round__. As such, we cannot test this method either. :( """ r = self.copy() r.toInt() return r def __add__(self, other): return self.copy().__iadd__(other) def __sub__(self, other): return self.copy().__isub__(other) def __mul__(self, other): return self.copy().__imul__(other) def __truediv__(self, other): return self.copy().__itruediv__(other) __radd__ = __add__ __rmul__ = __mul__ def __rsub__(self, other): return other + (-self) def __iadd__(self, other): """ >>> g = GlyphCoordinates([(1,2)]) >>> g += (.5,0) >>> g GlyphCoordinates([(1.5, 2.0)]) >>> g2 = GlyphCoordinates([(3,4)]) >>> g += g2 >>> g GlyphCoordinates([(4.5, 6.0)]) """ if isinstance(other, tuple): assert len(other) == 2 self.translate(other) return self if isinstance(other, GlyphCoordinates): if other.isFloat(): self._ensureFloat() other = other._a a = self._a assert len(a) == len(other) for i in range(len(a) // 2): self[i] = (a[2*i] + other[2*i], a[2*i+1] + other[2*i+1]) return self return NotImplemented def __isub__(self, other): """ >>> g = GlyphCoordinates([(1,2)]) >>> g -= (.5,0) >>> g GlyphCoordinates([(0.5, 2.0)]) >>> g2 = GlyphCoordinates([(3,4)]) >>> g -= g2 >>> g GlyphCoordinates([(-2.5, -2.0)]) """ if isinstance(other, tuple): assert len(other) == 2 self.translate((-other[0],-other[1])) return self if isinstance(other, GlyphCoordinates): if other.isFloat(): self._ensureFloat() other = other._a a = self._a assert len(a) == len(other) for i in range(len(a) // 2): self[i] = (a[2*i] - other[2*i], a[2*i+1] - other[2*i+1]) return self return NotImplemented def __imul__(self, other): """ >>> g = GlyphCoordinates([(1,2)]) >>> g *= (2,.5) >>> g *= 2 >>> g GlyphCoordinates([(4.0, 2.0)]) >>> g = GlyphCoordinates([(1,2)]) >>> g *= 2 >>> g GlyphCoordinates([(2, 4)]) """ if isinstance(other, Number): other = (other, other) if isinstance(other, tuple): if other == (1,1): return self assert len(other) == 2 self.scale(other) return self return NotImplemented def __itruediv__(self, other): """ >>> g = GlyphCoordinates([(1,3)]) >>> g /= (.5,1.5) >>> g /= 2 >>> g GlyphCoordinates([(1.0, 1.0)]) """ if isinstance(other, Number): other = (other, other) if isinstance(other, tuple): if other == (1,1): return self assert len(other) == 2 self.scale((1./other[0],1./other[1])) return self return NotImplemented def __bool__(self): """ >>> g = GlyphCoordinates([]) >>> bool(g) False >>> g = GlyphCoordinates([(0,0), (0.,0)]) >>> bool(g) True >>> g = GlyphCoordinates([(0,0), (1,0)]) >>> bool(g) True >>> g = GlyphCoordinates([(0,.5), (0,0)]) >>> bool(g) True """ return bool(self._a) __nonzero__ = __bool__ def reprflag(flag): bin = "" if isinstance(flag, str): flag = byteord(flag) while flag: if flag & 0x01: bin = "1" + bin else: bin = "0" + bin flag = flag >> 1 bin = (14 - len(bin)) * "0" + bin return bin if __name__ == "__main__": import doctest, sys sys.exit(doctest.testmod().failed)