# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division, absolute_import from math import hypot from fontTools.misc import bezierTools __all__ = ['curve_to_quadratic', 'curves_to_quadratic'] MAX_N = 100 class Cu2QuError(Exception): pass class ApproxNotFoundError(Cu2QuError): def __init__(self, curve, error=None): if error is None: message = "no approximation found: %s" % curve else: message = ("approximation error exceeds max tolerance: %s, " "error=%g" % (curve, error)) super(Cu2QuError, self).__init__(message) self.curve = curve self.error = error def vector(p1, p2): """Return the vector from p1 to p2.""" return p2[0] - p1[0], p2[1] - p1[1] def translate(p, v): """Translate a point by a vector.""" return p[0] + v[0], p[1] + v[1] def scale(v, n): """Scale a vector.""" return v[0] * n, v[1] * n def dist(p1, p2): """Calculate the distance between two points.""" return hypot(p1[0] - p2[0], p1[1] - p2[1]) def dot(v1, v2): """Return the dot product of two vectors.""" return v1[0] * v2[0] + v1[1] * v2[1] def lerp(a, b, t): """Linearly interpolate between scalars a and b at time t.""" return a * (1 - t) + b * t def lerp_pt(p1, p2, t): """Linearly interpolate between points p1 and p2 at time t.""" (x1, y1), (x2, y2) = p1, p2 return lerp(x1, x2, t), lerp(y1, y2, t) def quadratic_bezier_at(p, t): """Return the point on a quadratic bezier curve at time t.""" (x1, y1), (x2, y2), (x3, y3) = p return ( lerp(lerp(x1, x2, t), lerp(x2, x3, t), t), lerp(lerp(y1, y2, t), lerp(y2, y3, t), t)) def cubic_bezier_at(p, t): """Return the point on a cubic bezier curve at time t.""" (x1, y1), (x2, y2), (x3, y3), (x4, y4) = p return ( lerp(lerp(lerp(x1, x2, t), lerp(x2, x3, t), t), lerp(lerp(x2, x3, t), lerp(x3, x4, t), t), t), lerp(lerp(lerp(y1, y2, t), lerp(y2, y3, t), t), lerp(lerp(y2, y3, t), lerp(y3, y4, t), t), t)) def cubic_approx(p, t): """Approximate a cubic bezier curve with a quadratic one.""" p1 = lerp_pt(p[0], p[1], 1.5) p2 = lerp_pt(p[3], p[2], 1.5) return p[0], lerp_pt(p1, p2, t), p[3] def calc_intersect(p): """Calculate the intersection of ab and cd, given [a, b, c, d].""" a, b, c, d = p ab = vector(a, b) cd = vector(c, d) p = -ab[1], ab[0] try: h = dot(p, vector(c, a)) / dot(p, cd) except ZeroDivisionError: raise ValueError('Parallel vectors given to calc_intersect.') return translate(c, scale(cd, h)) def cubic_approx_spline(p, n): """Approximate a cubic bezier curve with a spline of n quadratics. Returns None if n is 1 and the cubic's control vectors are parallel, since no quadratic exists with this cubic's tangents. """ if n == 1: try: p1 = calc_intersect(p) except ValueError: return None return [p[0], p1, p[3]] spline = [p[0]] ts = [i / n for i in range(1, n)] segments = bezierTools.splitCubicAtT(p[0], p[1], p[2], p[3], *ts) for i in range(len(segments)): segment = cubic_approx(segments[i], i / (n - 1)) spline.append(segment[1]) spline.append(p[3]) return spline def curve_spline_dist(bezier, spline): """Max distance between a bezier and quadratic spline at sampled ts.""" TOTAL_STEPS = 20 error = 0 n = len(spline) - 2 steps = TOTAL_STEPS // n for i in range(1, n + 1): segment = [ spline[0] if i == 1 else segment[2], spline[i], spline[i + 1] if i == n else lerp_pt(spline[i], spline[i + 1], 0.5)] for j in range(steps): p1 = cubic_bezier_at(bezier, (j / steps + i - 1) / n) p2 = quadratic_bezier_at(segment, j / steps) error = max(error, dist(p1, p2)) return error def curve_to_quadratic(p, max_err): """Return a quadratic spline approximating this cubic bezier, and the error of approximation. Raise 'ApproxNotFoundError' if no suitable approximation can be found with the given parameters. """ spline, error = None, None for n in range(1, MAX_N + 1): spline = cubic_approx_spline(p, n) if spline is None: continue error = curve_spline_dist(p, spline) if error <= max_err: break else: # no break: approximation not found or error exceeds tolerance raise ApproxNotFoundError(p, error) return spline, error def curves_to_quadratic(curves, max_errors): """Return quadratic splines approximating these cubic beziers, and the respective errors of approximation. Raise 'ApproxNotFoundError' if no suitable approximation can be found for all curves with the given parameters. """ num_curves = len(curves) assert len(max_errors) == num_curves splines = [None] * num_curves errors = [None] * num_curves for n in range(1, MAX_N + 1): splines = [cubic_approx_spline(c, n) for c in curves] if not all(splines): continue errors = [curve_spline_dist(c, s) for c, s in zip(curves, splines)] if all(err <= max_err for err, max_err in zip(errors, max_errors)): break else: # no break: raise if any spline is None or error exceeds tolerance for c, s, error, max_err in zip(curves, splines, errors, max_errors): if s is None or error > max_err: raise ApproxNotFoundError(c, error) return splines, errors