# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division, absolute_import from math import hypot __all__ = ['curve_to_quadratic', 'curves_to_quadratic'] MAX_N = 100 def calcCubicPoints(a, b, c, d): _1 = d _2 = (c / 3.0) + d _3 = (b + c) / 3.0 + _2 _4 = a + d + c + b return _1, _2, _3, _4 def _splitCubicAtT(a, b, c, d, *ts): ts = list(ts) ts.insert(0, 0.0) ts.append(1.0) segments = [] for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) delta_2 = delta*delta delta_3 = delta*delta_2 t1_2 = t1*t1 t1_3 = t1*t1_2 # calc new a, b, c and d a1 = a * delta_3 b1 = (3*a*t1 + b) * delta_2 c1 = (2*b*t1 + c + 3*a*t1_2) * delta d1 = a*t1_3 + b*t1_2 + c*t1 + d pt1, pt2, pt3, pt4 = calcCubicPoints(a1, b1, c1, d1) segments.append((pt1, pt2, pt3, pt4)) return segments def calcCubicParameters(pt1, pt2, pt3, pt4): c = (pt2 -pt1) * 3.0 b = (pt3 - pt2) * 3.0 - c d = pt1 a = pt4 - d - c - b return a, b, c, d def splitCubicAtT(pt1, pt2, pt3, pt4, *ts): a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) return _splitCubicAtT(a, b, c, d, *ts) class Cu2QuError(Exception): pass class ApproxNotFoundError(Cu2QuError): def __init__(self, curve, error=None): if error is None: message = "no approximation found: %s" % curve else: message = ("approximation error exceeds max tolerance: %s, " "error=%g" % (curve, error)) super(Cu2QuError, self).__init__(message) self.curve = curve self.error = error def dot(v1, v2): """Return the dot product of two vectors.""" return v1.real * v2.real + v1.imag * v2.imag def cubic_from_quadratic(p): return (p[0], p[0]+(p[1]-p[0])*(2./3), p[2]+(p[1]-p[2])*(2./3), p[2]) def cubic_approx_control(p, t): """Approximate a cubic bezier curve with a quadratic one. Returns the candidate control point.""" p1 = p[0]+(p[1]-p[0])*1.5 p2 = p[3]+(p[2]-p[3])*1.5 return p1+(p2-p1)*t def calc_intersect(p): """Calculate the intersection of ab and cd, given [a, b, c, d].""" a, b, c, d = p ab = b - a cd = d - c p = ab * 1j try: h = dot(p, a - c) / dot(p, cd) except ZeroDivisionError: raise ValueError('Parallel vectors given to calc_intersect.') return c + cd * h def cubic_farthest2(p,tolerance): e0 = abs(p[0]) e3 = abs(p[3]) e = max(e0, e3) if e > tolerance: return e e1 = abs(p[1]) e2 = abs(p[2]) e = max(e1, e2) if e <= tolerance: return e # Split. segments = splitCubicAtT(p[0], p[1], p[2], p[3], .5) return max(cubic_farthest2(s,tolerance) for s in segments) def cubic_cubic_error(a,b,tolerance): return cubic_farthest2((b[0] - a[0], b[1] - a[1], b[2] - a[2], b[3] - a[3]), tolerance) def cubic_quadratic_error(a,b,tolerance): return cubic_cubic_error(a, cubic_from_quadratic(b), tolerance) def cubic_approx_spline(p, n, tolerance): """Approximate a cubic bezier curve with a spline of n quadratics. Returns None if n is 1 and the cubic's control vectors are parallel, since no quadratic exists with this cubic's tangents. """ if n == 1: try: p1 = calc_intersect(p) except ValueError: return None quad = (p[0], p1, p[3]) if cubic_quadratic_error(p, quad, tolerance) > tolerance: return None return quad spline = [p[0]] ts = [i / n for i in range(1, n)] segments = splitCubicAtT(p[0], p[1], p[2], p[3], *ts) for i in range(len(segments)): spline.append(cubic_approx_control(segments[i], i / (n - 1))) spline.append(p[3]) for i in range(1,n+1): if i == 1: segment = (spline[0],spline[1],(spline[1]+spline[2])*.5) elif i == n: segment = (spline[-3]+spline[-2])*.5,spline[-2],spline[-1] else: segment = (spline[i-1]+spline[i])*.5, spline[i], (spline[i]+spline[i+1])*.5 error = cubic_quadratic_error(segments[i-1], segment, tolerance) if error > tolerance: return None return spline def curve_to_quadratic(p, max_err): """Return a quadratic spline approximating this cubic bezier, and the error of approximation. Raise 'ApproxNotFoundError' if no suitable approximation can be found with the given parameters. """ p = [complex(*P) for P in p] spline, error = None, None for n in range(1, MAX_N + 1): spline = cubic_approx_spline(p, n, max_err) if spline is not None: break else: # no break: approximation not found or error exceeds tolerance raise ApproxNotFoundError(p, error) return spline, error def curves_to_quadratic(curves, max_errors): """Return quadratic splines approximating these cubic beziers, and the respective errors of approximation. Raise 'ApproxNotFoundError' if no suitable approximation can be found for all curves with the given parameters. """ curves = [[complex(*P) for P in p] for p in curves] num_curves = len(curves) assert len(max_errors) == num_curves splines = [None] * num_curves errors = [None] * num_curves for n in range(1, MAX_N + 1): splines = [cubic_approx_spline(c, n, e) for c,e in zip(curves,max_errors)] if all(splines): break else: # no break: raise if any spline is None or error exceeds tolerance for c, s, error, max_err in zip(curves, splines, errors, max_errors): if s is None or error > max_err: raise ApproxNotFoundError(c, error) return splines, errors