""" Module for dealing with 'gvar'-style font variations, also known as run-time interpolation. The ideas here are very similar to MutatorMath. There is even code to read MutatorMath .designspace files in the varLib.designspace module. For now, if you run this file on a designspace file, it tries to find ttf-interpolatable files for the masters and build a variable-font from them. Such ttf-interpolatable and designspace files can be generated from a Glyphs source, eg., using noto-source as an example: $ fontmake -o ttf-interpolatable -g NotoSansArabic-MM.glyphs Then you can make a variable-font this way: $ fonttools varLib master_ufo/NotoSansArabic.designspace API *will* change in near future. """ from __future__ import print_function, division, absolute_import from __future__ import unicode_literals from fontTools.misc.py23 import * from fontTools.misc.arrayTools import Vector from fontTools.ttLib import TTFont, newTable from fontTools.ttLib.tables._n_a_m_e import NameRecord from fontTools.ttLib.tables._f_v_a_r import Axis, NamedInstance from fontTools.ttLib.tables._g_l_y_f import GlyphCoordinates from fontTools.ttLib.tables.TupleVariation import TupleVariation from fontTools.ttLib.tables import otTables as ot from fontTools.varLib import builder, designspace, models from fontTools.varLib.merger import VariationMerger, _all_equal from collections import OrderedDict import os.path import logging from pprint import pformat log = logging.getLogger("fontTools.varLib") class VarLibError(Exception): pass # # Creation routines # def _add_fvar(font, axes, instances): """ Add 'fvar' table to font. axes is an ordered dictionary of DesignspaceAxis objects. instances is list of dictionary objects with 'location', 'stylename', and possibly 'postscriptfontname' entries. """ assert axes assert isinstance(axes, OrderedDict) log.info("Generating fvar") fvar = newTable('fvar') nameTable = font['name'] for a in axes.values(): axis = Axis() axis.axisTag = Tag(a.tag) axis.minValue, axis.defaultValue, axis.maxValue = a.minimum, a.default, a.maximum axis.axisNameID = nameTable.addName(tounicode(a.labelname['en'])) # TODO: # Replace previous line with the following when the following issues are resolved: # https://github.com/fonttools/fonttools/issues/930 # https://github.com/fonttools/fonttools/issues/931 # axis.axisNameID = nameTable.addMultilingualName(a.labelname, font) fvar.axes.append(axis) for instance in instances: coordinates = instance['location'] name = tounicode(instance['stylename']) psname = instance.get('postscriptfontname') inst = NamedInstance() inst.subfamilyNameID = nameTable.addName(name) if psname is not None: psname = tounicode(psname) inst.postscriptNameID = nameTable.addName(psname) inst.coordinates = {axes[k].tag:axes[k].map_backward(v) for k,v in coordinates.items()} #inst.coordinates = {axes[k].tag:v for k,v in coordinates.items()} fvar.instances.append(inst) assert "fvar" not in font font['fvar'] = fvar return fvar def _add_avar(font, axes): """ Add 'avar' table to font. axes is an ordered dictionary of DesignspaceAxis objects. """ assert axes assert isinstance(axes, OrderedDict) log.info("Generating avar") avar = newTable('avar') interesting = False for axis in axes.values(): # Currently, some rasterizers require that the default value maps # (-1 to -1, 0 to 0, and 1 to 1) be present for all the segment # maps, even when the default normalization mapping for the axis # was not modified. # https://github.com/googlei18n/fontmake/issues/295 # https://github.com/fonttools/fonttools/issues/1011 # TODO(anthrotype) revert this (and 19c4b37) when issue is fixed curve = avar.segments[axis.tag] = {-1.0: -1.0, 0.0: 0.0, 1.0: 1.0} if not axis.map: continue items = sorted(axis.map.items()) keys = [item[0] for item in items] vals = [item[1] for item in items] # Current avar requirements. We don't have to enforce # these on the designer and can deduce some ourselves, # but for now just enforce them. assert axis.minimum == min(keys) assert axis.maximum == max(keys) assert axis.default in keys # No duplicates assert len(set(keys)) == len(keys) assert len(set(vals)) == len(vals) # Ascending values assert sorted(vals) == vals keys_triple = (axis.minimum, axis.default, axis.maximum) vals_triple = tuple(axis.map_forward(v) for v in keys_triple) keys = [models.normalizeValue(v, keys_triple) for v in keys] vals = [models.normalizeValue(v, vals_triple) for v in vals] if all(k == v for k, v in zip(keys, vals)): continue interesting = True curve.update(zip(keys, vals)) assert 0.0 in curve and curve[0.0] == 0.0 assert -1.0 not in curve or curve[-1.0] == -1.0 assert +1.0 not in curve or curve[+1.0] == +1.0 # curve.update({-1.0: -1.0, 0.0: 0.0, 1.0: 1.0}) assert "avar" not in font if not interesting: log.info("No need for avar") avar = None else: font['avar'] = avar return avar # TODO Move to glyf or gvar table proper def _GetCoordinates(font, glyphName): """font, glyphName --> glyph coordinates as expected by "gvar" table The result includes four "phantom points" for the glyph metrics, as mandated by the "gvar" spec. """ glyf = font["glyf"] if glyphName not in glyf.glyphs: return None glyph = glyf[glyphName] if glyph.isComposite(): coord = GlyphCoordinates([(getattr(c, 'x', 0),getattr(c, 'y', 0)) for c in glyph.components]) control = (glyph.numberOfContours,[c.glyphName for c in glyph.components]) else: allData = glyph.getCoordinates(glyf) coord = allData[0] control = (glyph.numberOfContours,)+allData[1:] # Add phantom points for (left, right, top, bottom) positions. horizontalAdvanceWidth, leftSideBearing = font["hmtx"].metrics[glyphName] if not hasattr(glyph, 'xMin'): glyph.recalcBounds(glyf) leftSideX = glyph.xMin - leftSideBearing rightSideX = leftSideX + horizontalAdvanceWidth # XXX these are incorrect. Load vmtx and fix. topSideY = glyph.yMax bottomSideY = -glyph.yMin coord = coord.copy() coord.extend([(leftSideX, 0), (rightSideX, 0), (0, topSideY), (0, bottomSideY)]) return coord, control # TODO Move to glyf or gvar table proper def _SetCoordinates(font, glyphName, coord): glyf = font["glyf"] assert glyphName in glyf.glyphs glyph = glyf[glyphName] # Handle phantom points for (left, right, top, bottom) positions. assert len(coord) >= 4 if not hasattr(glyph, 'xMin'): glyph.recalcBounds(glyf) leftSideX = coord[-4][0] rightSideX = coord[-3][0] topSideY = coord[-2][1] bottomSideY = coord[-1][1] for _ in range(4): del coord[-1] if glyph.isComposite(): assert len(coord) == len(glyph.components) for p,comp in zip(coord, glyph.components): if hasattr(comp, 'x'): comp.x,comp.y = p elif glyph.numberOfContours is 0: assert len(coord) == 0 else: assert len(coord) == len(glyph.coordinates) glyph.coordinates = coord glyph.recalcBounds(glyf) horizontalAdvanceWidth = round(rightSideX - leftSideX) leftSideBearing = round(glyph.xMin - leftSideX) # XXX Handle vertical font["hmtx"].metrics[glyphName] = horizontalAdvanceWidth, leftSideBearing def _all_interpolatable_in_between(deltas, coords, i, j, tolerance): assert j - i >= 2 from fontTools.varLib.mutator import _iup_segment interp = list(_iup_segment(coords[i+1:j], coords[i], deltas[i], coords[j], deltas[j])) deltas = deltas[i+1:j] assert len(deltas) == len(interp) return all(abs(complex(x-p, y-q)) <= tolerance for (x,y),(p,q) in zip(deltas, interp)) def _iup_contour_bound_forced_set(delta, coords, tolerance=0): """The forced set is a conservative set of points on the contour that must be encoded explicitly (ie. cannot be interpolated). Calculating this set allows for significantly speeding up the dynamic-programming, as well as resolve circularity in DP. The set is precise; that is, if an index is in the returned set, then there is no way that IUP can generate delta for that point, given coords and delta. """ assert len(delta) == len(coords) forced = set() # Track "last" and "next" points on the contour as we sweep. nd, nc = delta[0], coords[0] ld, lc = delta[-1], coords[-1] for i in range(len(delta)-1, -1, -1): d, c = ld, lc ld, lc = delta[i-1], coords[i-1] for j in (0,1): # For X and for Y cj = c[j] dj = d[j] lcj = lc[j] ldj = ld[j] ncj = nc[j] ndj = nd[j] if lcj <= ncj: c1, c2 = lcj, ncj d1, d2 = ldj, ndj else: c1, c2 = ncj, lcj d1, d2 = ndj, ldj # If coordinate for current point is between coordinate of adjacent # points on the two sides, but the delta for current point is NOT # between delta for those adjacent points (considering tolerance # allowance), then there is no way that current point can be IUP-ed. # Mark it forced. force = False if c1 <= cj <= c2: if not (min(d1,d2)-tolerance <= dj <= max(d1,d2)+tolerance): force = True else: # cj < c1 or c2 < cj if c1 == c2: if d1 == d2: if abs(dj - d1) > tolerance: force = True else: if abs(dj) > tolerance: # Disabled the following because the "d1 == d2" does # check does not take tolerance into consideration... pass # force = True elif d1 != d2: if cj < c1: if dj != d1 and ((dj-tolerance < d1) != (d1 < d2)): force = True else: # c2 < cj if d2 != dj and ((d2 < dj+tolerance) != (d1 < d2)): force = True if force: forced.add(i) break nd, nc = d, c return forced def _iup_contour_optimize_dp(delta, coords, forced={}, tolerance=0, lookback=None): """Straightforward Dynamic-Programming. For each index i, find least-costly encoding of points i to n-1 where i is explicitly encoded. We find this by considering all next explicit points j and check whether interpolation can fill points between i and j. Note that solution always encodes last point explicitly. Higher-level is responsible for removing that restriction. As major speedup, we stop looking further whenever we see a "forced" point.""" n = len(delta) if lookback is None: lookback = n costs = {-1:0} chain = {-1:None} for i in range(0, n): best_cost = costs[i-1] + 1 costs[i] = best_cost chain[i] = i - 1 if i - 1 in forced: continue for j in range(i-2, max(i-lookback, -2), -1): cost = costs[j] + 1 if cost < best_cost and _all_interpolatable_in_between(delta, coords, j, i, tolerance): costs[i] = best_cost = cost chain[i] = j if j in forced: break return chain, costs def _rot_list(l, k): """Rotate list by k items forward. Ie. item at position 0 will be at position k in returned list. Negative k is allowed.""" n = len(l) k %= n if not k: return l return l[n-k:] + l[:n-k] def _rot_set(s, k, n): k %= n if not k: return s return {(v + k) % n for v in s} def _iup_contour_optimize(delta, coords, tolerance=0.): n = len(delta) # Get the easy cases out of the way: # If all are within tolerance distance of 0, encode nothing: if all(abs(complex(*p)) <= tolerance for p in delta): return [None] * n # If there's exactly one point, return it: if n == 1: return delta # If all deltas are exactly the same, return just one (the first one): d0 = delta[0] if all(d0 == d for d in delta): return [d0] + [None] * (n-1) # Else, solve the general problem using Dynamic Programming. forced = _iup_contour_bound_forced_set(delta, coords, tolerance) # The _iup_contour_optimize_dp() routine returns the optimal encoding # solution given the constraint that the last point is always encoded. # To remove this constraint, we use two different methods, depending on # whether forced set is non-empty or not: if forced: # Forced set is non-empty: rotate the contour start point # such that the last point in the list is a forced point. k = (n-1) - max(forced) assert k >= 0 delta = _rot_list(delta, k) coords = _rot_list(coords, k) forced = _rot_set(forced, k, n) chain, costs = _iup_contour_optimize_dp(delta, coords, forced, tolerance) # Assemble solution. solution = set() i = n - 1 while i is not None: solution.add(i) i = chain[i] assert forced <= solution, (forced, solution) delta = [delta[i] if i in solution else None for i in range(n)] delta = _rot_list(delta, -k) else: # Repeat the contour an extra time, solve the 2*n case, then look for solutions of the # circular n-length problem in the solution for 2*n linear case. I cannot prove that # this always produces the optimal solution... chain, costs = _iup_contour_optimize_dp(delta+delta, coords+coords, forced, tolerance, n) best_sol, best_cost = None, n+1 for start in range(n-1, 2*n-1): # Assemble solution. solution = set() i = start while i > start - n: solution.add(i % n) i = chain[i] if i == start - n: cost = costs[start] - costs[start - n] if cost <= best_cost: best_sol, best_cost = solution, cost delta = [delta[i] if i in best_sol else None for i in range(n)] return delta def _iup_delta_optimize(delta, coords, ends, tolerance=0.): assert sorted(ends) == ends and len(coords) == (ends[-1]+1 if ends else 0) + 4 n = len(coords) ends = ends + [n-4, n-3, n-2, n-1] out = [] start = 0 for end in ends: contour = _iup_contour_optimize(delta[start:end+1], coords[start:end+1], tolerance) assert len(contour) == end - start + 1 out.extend(contour) start = end+1 return out def _add_gvar(font, model, master_ttfs, tolerance=0.5, optimize=True): assert tolerance >= 0 log.info("Generating gvar") assert "gvar" not in font gvar = font["gvar"] = newTable('gvar') gvar.version = 1 gvar.reserved = 0 gvar.variations = {} for glyph in font.getGlyphOrder(): allData = [_GetCoordinates(m, glyph) for m in master_ttfs] allCoords = [d[0] for d in allData] allControls = [d[1] for d in allData] control = allControls[0] if (any(c != control for c in allControls)): log.warning("glyph %s has incompatible masters; skipping" % glyph) continue del allControls # Update gvar gvar.variations[glyph] = [] deltas = model.getDeltas(allCoords) supports = model.supports assert len(deltas) == len(supports) # Prepare for IUP optimization origCoords = deltas[0] endPts = control[1] if control[0] >= 1 else list(range(len(control[1]))) for i,(delta,support) in enumerate(zip(deltas[1:], supports[1:])): if all(abs(v) <= tolerance for v in delta.array): continue var = TupleVariation(support, delta) if optimize: delta_opt = _iup_delta_optimize(delta, origCoords, endPts, tolerance=tolerance) if None in delta_opt: # Use "optimized" version only if smaller... var_opt = TupleVariation(support, delta_opt) axis_tags = sorted(support.keys()) # Shouldn't matter that this is different from fvar...? tupleData, auxData = var.compile(axis_tags, [], None) unoptimized_len = len(tupleData) + len(auxData) tupleData, auxData = var_opt.compile(axis_tags, [], None) optimized_len = len(tupleData) + len(auxData) if optimized_len < unoptimized_len: var = var_opt gvar.variations[glyph].append(var) def _add_cvar(font, model, master_ttfs, tolerance=0.5): log.info("Generating cvar") assert "cvar" not in font cvar = font["cvar"] = newTable('cvar') cvar.version = 1 cvar.variations = [] allCVTs = [Vector(m["cvt "].values) for m in master_ttfs] num_cvts0 = len(allCVTs[0]) if (any(len(c) != num_cvts0 for c in allCVTs)): log.warning("Master has incompatible cvt table, not building cvar table.") del font["cvar"] return deltas = model.getDeltas(allCVTs) supports = model.supports for i,(delta,support) in enumerate(zip(deltas[1:], supports[1:])): delta = [int(round(d)) for d in delta] if all(abs(v) <= tolerance for v in delta): continue var = TupleVariation(support, delta) cvar.variations.append(var) def _add_HVAR(font, model, master_ttfs, axisTags): log.info("Generating HVAR") hAdvanceDeltas = {} metricses = [m["hmtx"].metrics for m in master_ttfs] for glyph in font.getGlyphOrder(): hAdvances = [metrics[glyph][0] for metrics in metricses] # TODO move round somewhere else? hAdvanceDeltas[glyph] = tuple(round(d) for d in model.getDeltas(hAdvances)[1:]) # We only support the direct mapping right now. supports = model.supports[1:] varTupleList = builder.buildVarRegionList(supports, axisTags) varTupleIndexes = list(range(len(supports))) n = len(supports) items = [] zeroes = [0]*n for glyphName in font.getGlyphOrder(): items.append(hAdvanceDeltas.get(glyphName, zeroes)) while items and items[-1] is zeroes: del items[-1] advanceMapping = None # Add indirect mapping to save on duplicates uniq = set(items) # TODO Improve heuristic if (len(items) - len(uniq)) * len(varTupleIndexes) > len(items): newItems = sorted(uniq) mapper = {v:i for i,v in enumerate(newItems)} mapping = [mapper[item] for item in items] while len(mapping) > 1 and mapping[-1] == mapping[-2]: del mapping[-1] advanceMapping = builder.buildVarIdxMap(mapping) items = newItems del mapper, mapping, newItems del uniq varData = builder.buildVarData(varTupleIndexes, items) varStore = builder.buildVarStore(varTupleList, [varData]) assert "HVAR" not in font HVAR = font["HVAR"] = newTable('HVAR') hvar = HVAR.table = ot.HVAR() hvar.Version = 0x00010000 hvar.VarStore = varStore hvar.AdvWidthMap = advanceMapping hvar.LsbMap = hvar.RsbMap = None _MVAR_entries = { 'hasc': ('OS/2', 'sTypoAscender'), # horizontal ascender 'hdsc': ('OS/2', 'sTypoDescender'), # horizontal descender 'hlgp': ('OS/2', 'sTypoLineGap'), # horizontal line gap 'hcla': ('OS/2', 'usWinAscent'), # horizontal clipping ascent 'hcld': ('OS/2', 'usWinDescent'), # horizontal clipping descent 'vasc': ('vhea', 'ascent'), # vertical ascender 'vdsc': ('vhea', 'descent'), # vertical descender 'vlgp': ('vhea', 'lineGap'), # vertical line gap 'hcrs': ('hhea', 'caretSlopeRise'), # horizontal caret rise 'hcrn': ('hhea', 'caretSlopeRun'), # horizontal caret run 'hcof': ('hhea', 'caretOffset'), # horizontal caret offset 'vcrs': ('vhea', 'caretSlopeRise'), # vertical caret rise 'vcrn': ('vhea', 'caretSlopeRun'), # vertical caret run 'vcof': ('vhea', 'caretOffset'), # vertical caret offset 'xhgt': ('OS/2', 'sxHeight'), # x height 'cpht': ('OS/2', 'sCapHeight'), # cap height 'sbxs': ('OS/2', 'ySubscriptXSize'), # subscript em x size 'sbys': ('OS/2', 'ySubscriptYSize'), # subscript em y size 'sbxo': ('OS/2', 'ySubscriptXOffset'), # subscript em x offset 'sbyo': ('OS/2', 'ySubscriptYOffset'), # subscript em y offset 'spxs': ('OS/2', 'ySuperscriptXSize'), # superscript em x size 'spys': ('OS/2', 'ySuperscriptYSize'), # superscript em y size 'spxo': ('OS/2', 'ySuperscriptXOffset'), # superscript em x offset 'spyo': ('OS/2', 'ySuperscriptYOffset'), # superscript em y offset 'strs': ('OS/2', 'yStrikeoutSize'), # strikeout size 'stro': ('OS/2', 'yStrikeoutPosition'), # strikeout offset 'unds': ('post', 'underlineThickness'), # underline size 'undo': ('post', 'underlinePosition'), # underline offset #'gsp0': ('gasp', 'gaspRange[0].rangeMaxPPEM'), # gaspRange[0] #'gsp1': ('gasp', 'gaspRange[1].rangeMaxPPEM'), # gaspRange[1] #'gsp2': ('gasp', 'gaspRange[2].rangeMaxPPEM'), # gaspRange[2] #'gsp3': ('gasp', 'gaspRange[3].rangeMaxPPEM'), # gaspRange[3] #'gsp4': ('gasp', 'gaspRange[4].rangeMaxPPEM'), # gaspRange[4] #'gsp5': ('gasp', 'gaspRange[5].rangeMaxPPEM'), # gaspRange[5] #'gsp6': ('gasp', 'gaspRange[6].rangeMaxPPEM'), # gaspRange[6] #'gsp7': ('gasp', 'gaspRange[7].rangeMaxPPEM'), # gaspRange[7] #'gsp8': ('gasp', 'gaspRange[8].rangeMaxPPEM'), # gaspRange[8] #'gsp9': ('gasp', 'gaspRange[9].rangeMaxPPEM'), # gaspRange[9] } def _add_MVAR(font, model, master_ttfs, axisTags): log.info("Generating MVAR") store_builder = builder.OnlineVarStoreBuilder(axisTags) store_builder.setModel(model) records = [] lastTableTag = None fontTable = None tables = None for tag, (tableTag, itemName) in sorted(_MVAR_entries.items(), key=lambda kv: kv[1]): if tableTag != lastTableTag: tables = fontTable = None if tableTag in font: # TODO Check all masters have same table set? fontTable = font[tableTag] tables = [master[tableTag] for master in master_ttfs] lastTableTag = tableTag if tables is None: continue # TODO support gasp entries master_values = [getattr(table, itemName) for table in tables] if _all_equal(master_values): base, varIdx = master_values[0], None else: base, varIdx = store_builder.storeMasters(master_values) setattr(fontTable, itemName, base) if varIdx is None: continue log.info(' %s: %s.%s %s', tag, tableTag, itemName, master_values) rec = ot.MetricsValueRecord() rec.ValueTag = tag rec.VarIdx = varIdx records.append(rec) assert "MVAR" not in font if records: MVAR = font["MVAR"] = newTable('MVAR') mvar = MVAR.table = ot.MVAR() mvar.Version = 0x00010000 mvar.Reserved = 0 mvar.VarStore = store_builder.finish() # XXX these should not be hard-coded but computed automatically mvar.ValueRecordSize = 8 mvar.ValueRecordCount = len(records) mvar.ValueRecord = sorted(records, key=lambda r: r.ValueTag) def _merge_OTL(font, model, master_fonts, axisTags): log.info("Merging OpenType Layout tables") merger = VariationMerger(model, axisTags, font) merger.mergeTables(font, master_fonts, ['GPOS']) store = merger.store_builder.finish() try: GDEF = font['GDEF'].table assert GDEF.Version <= 0x00010002 except KeyError: font['GDEF']= newTable('GDEF') GDEFTable = font["GDEF"] = newTable('GDEF') GDEF = GDEFTable.table = ot.GDEF() GDEF.Version = 0x00010003 GDEF.VarStore = store def load_designspace(designspace_filename): ds = designspace.load(designspace_filename) axes = ds.get('axes') masters = ds.get('sources') if not masters: raise VarLibError("no sources found in .designspace") instances = ds.get('instances', []) standard_axis_map = OrderedDict([ ('weight', ('wght', {'en':'Weight'})), ('width', ('wdth', {'en':'Width'})), ('slant', ('slnt', {'en':'Slant'})), ('optical', ('opsz', {'en':'Optical Size'})), ]) # Setup axes class DesignspaceAxis(object): def __repr__(self): return repr(self.__dict__) @staticmethod def _map(v, map): keys = map.keys() if not keys: return v if v in keys: return map[v] k = min(keys) if v < k: return v + map[k] - k k = max(keys) if v > k: return v + map[k] - k # Interpolate a = max(k for k in keys if k < v) b = min(k for k in keys if k > v) va = map[a] vb = map[b] return va + (vb - va) * (v - a) / (b - a) def map_forward(self, v): if self.map is None: return v return self._map(v, self.map) def map_backward(self, v): if self.map is None: return v map = {v:k for k,v in self.map.items()} return self._map(v, map) axis_objects = OrderedDict() if axes is not None: for axis_dict in axes: axis_name = axis_dict.get('name') if not axis_name: axis_name = axis_dict['name'] = axis_dict['tag'] if 'map' not in axis_dict: axis_dict['map'] = None else: axis_dict['map'] = {m['input']:m['output'] for m in axis_dict['map']} if axis_name in standard_axis_map: if 'tag' not in axis_dict: axis_dict['tag'] = standard_axis_map[axis_name][0] if 'labelname' not in axis_dict: axis_dict['labelname'] = standard_axis_map[axis_name][1].copy() axis = DesignspaceAxis() for item in ['name', 'tag', 'minimum', 'default', 'maximum', 'map']: assert item in axis_dict, 'Axis does not have "%s"' % item if 'labelname' not in axis_dict: axis_dict['labelname'] = {'en': axis_name} axis.__dict__ = axis_dict axis_objects[axis_name] = axis else: # No element. Guess things... base_idx = None for i,m in enumerate(masters): if 'info' in m and m['info']['copy']: assert base_idx is None base_idx = i assert base_idx is not None, "Cannot find 'base' master; Either add element to .designspace document, or add element to one of the sources in the .designspace document." master_locs = [o['location'] for o in masters] base_loc = master_locs[base_idx] axis_names = set(base_loc.keys()) assert all(name in standard_axis_map for name in axis_names), "Non-standard axis found and there exist no element." for name,(tag,labelname) in standard_axis_map.items(): if name not in axis_names: continue axis = DesignspaceAxis() axis.name = name axis.tag = tag axis.labelname = labelname.copy() axis.default = base_loc[name] axis.minimum = min(m[name] for m in master_locs if name in m) axis.maximum = max(m[name] for m in master_locs if name in m) axis.map = None # TODO Fill in weight / width mapping from OS/2 table? Need loading fonts... axis_objects[name] = axis del base_idx, base_loc, axis_names, master_locs axes = axis_objects del axis_objects log.info("Axes:\n%s", pformat(axes)) # Check all master and instance locations are valid and fill in defaults for obj in masters+instances: obj_name = obj.get('name', obj.get('stylename', '')) loc = obj['location'] for axis_name in loc.keys(): assert axis_name in axes, "Location axis '%s' unknown for '%s'." % (axis_name, obj_name) for axis_name,axis in axes.items(): if axis_name not in loc: loc[axis_name] = axis.default else: v = axis.map_backward(loc[axis_name]) assert axis.minimum <= v <= axis.maximum, "Location for axis '%s' (mapped to %s) out of range for '%s' [%s..%s]" % (axis_name, v, obj_name, axis.minimum, axis.maximum) # Normalize master locations normalized_master_locs = [o['location'] for o in masters] log.info("Internal master locations:\n%s", pformat(normalized_master_locs)) # TODO This mapping should ideally be moved closer to logic in _add_fvar/avar internal_axis_supports = {} for axis in axes.values(): triple = (axis.minimum, axis.default, axis.maximum) internal_axis_supports[axis.name] = [axis.map_forward(v) for v in triple] log.info("Internal axis supports:\n%s", pformat(internal_axis_supports)) normalized_master_locs = [models.normalizeLocation(m, internal_axis_supports) for m in normalized_master_locs] log.info("Normalized master locations:\n%s", pformat(normalized_master_locs)) # Find base master base_idx = None for i,m in enumerate(normalized_master_locs): if all(v == 0 for v in m.values()): assert base_idx is None base_idx = i assert base_idx is not None, "Base master not found; no master at default location?" log.info("Index of base master: %s", base_idx) return axes, internal_axis_supports, base_idx, normalized_master_locs, masters, instances def build(designspace_filename, master_finder=lambda s:s): """ Build variation font from a designspace file. If master_finder is set, it should be a callable that takes master filename as found in designspace file and map it to master font binary as to be opened (eg. .ttf or .otf). """ axes, internal_axis_supports, base_idx, normalized_master_locs, masters, instances = load_designspace(designspace_filename) log.info("Building variable font") log.info("Loading master fonts") basedir = os.path.dirname(designspace_filename) master_ttfs = [master_finder(os.path.join(basedir, m['filename'])) for m in masters] master_fonts = [TTFont(ttf_path) for ttf_path in master_ttfs] # Reload base font as target font vf = TTFont(master_ttfs[base_idx]) # TODO append masters as named-instances as well; needs .designspace change. fvar = _add_fvar(vf, axes, instances) _add_avar(vf, axes) del instances # Map from axis names to axis tags... normalized_master_locs = [{axes[k].tag:v for k,v in loc.items()} for loc in normalized_master_locs] #del axes # From here on, we use fvar axes only axisTags = [axis.axisTag for axis in fvar.axes] # Assume single-model for now. model = models.VariationModel(normalized_master_locs) assert 0 == model.mapping[base_idx] log.info("Building variations tables") _add_MVAR(vf, model, master_fonts, axisTags) _add_HVAR(vf, model, master_fonts, axisTags) _merge_OTL(vf, model, master_fonts, axisTags) if 'glyf' in vf: _add_gvar(vf, model, master_fonts) if 'cvt ' in vf: _add_cvar(vf, model, master_fonts) return vf, model, master_ttfs def main(args=None): from argparse import ArgumentParser from fontTools import configLogger parser = ArgumentParser(prog='varLib') parser.add_argument('designspace') options = parser.parse_args(args) # TODO: allow user to configure logging via command-line options configLogger(level="INFO") designspace_filename = options.designspace finder = lambda s: s.replace('master_ufo', 'master_ttf_interpolatable').replace('.ufo', '.ttf') outfile = os.path.splitext(designspace_filename)[0] + '-VF.ttf' vf, model, master_ttfs = build(designspace_filename, finder) log.info("Saving variation font %s", outfile) vf.save(outfile) if __name__ == "__main__": import sys if len(sys.argv) > 1: sys.exit(main()) import doctest sys.exit(doctest.testmod().failed)