Santhosh Thottingal 06dc10d30b Fix syntax error about starred expression in python < 3.5
Also minor documentation fix.
2018-01-04 17:56:14 +05:30

334 lines
12 KiB
Python

# SVG Path specification parser.
# This is an adaptation from 'svg.path' by Lennart Regebro (@regebro),
# modified so that the parser takes a FontTools Pen object instead of
# returning a list of svg.path Path objects.
# The original code can be found at:
# https://github.com/regebro/svg.path/blob/4f9b6e3/src/svg/path/parser.py
# Copyright (c) 2013-2014 Lennart Regebro
# License: MIT
from __future__ import (
print_function, division, absolute_import, unicode_literals)
from fontTools.misc.py23 import *
from math import sqrt, cos, sin, acos, degrees, radians
import re
COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
UPPERCASE = set('MZLHVCSQTA')
COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
class Arc(object):
def __init__(self, start, radius, rotation, arc, sweep, end):
"""radius is complex, rotation is in degrees,
arc and sweep are 1 or 0 (True/False also work)"""
self.start = start
self.radius = radius
self.rotation = rotation
self.arc = bool(arc)
self.sweep = bool(sweep)
self.end = end
self._parameterize()
def _parameterize(self):
# Conversion from endpoint to center parameterization
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
cosr = cos(radians(self.rotation))
sinr = sin(radians(self.rotation))
dx = (self.start.real - self.end.real) / 2
dy = (self.start.imag - self.end.imag) / 2
x1prim = cosr * dx + sinr * dy
x1prim_sq = x1prim * x1prim
y1prim = -sinr * dx + cosr * dy
y1prim_sq = y1prim * y1prim
rx = self.radius.real
rx_sq = rx * rx
ry = self.radius.imag
ry_sq = ry * ry
# Correct out of range radii
radius_check = (x1prim_sq / rx_sq) + (y1prim_sq / ry_sq)
if radius_check > 1:
rx *= sqrt(radius_check)
ry *= sqrt(radius_check)
rx_sq = rx * rx
ry_sq = ry * ry
t1 = rx_sq * y1prim_sq
t2 = ry_sq * x1prim_sq
c = sqrt(abs((rx_sq * ry_sq - t1 - t2) / (t1 + t2)))
if self.arc == self.sweep:
c = -c
cxprim = c * rx * y1prim / ry
cyprim = -c * ry * x1prim / rx
self.center = complex((cosr * cxprim - sinr * cyprim) +
((self.start.real + self.end.real) / 2),
(sinr * cxprim + cosr * cyprim) +
((self.start.imag + self.end.imag) / 2))
ux = (x1prim - cxprim) / rx
uy = (y1prim - cyprim) / ry
vx = (-x1prim - cxprim) / rx
vy = (-y1prim - cyprim) / ry
n = sqrt(ux * ux + uy * uy)
p = ux
theta = degrees(acos(p / n))
if uy < 0:
theta = -theta
self.theta = theta % 360
n = sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy))
p = ux * vx + uy * vy
d = p/n
# In certain cases the above calculation can through inaccuracies
# become just slightly out of range, f ex -1.0000000000000002.
if d > 1.0:
d = 1.0
elif d < -1.0:
d = -1.0
delta = degrees(acos(d))
if (ux * vy - uy * vx) < 0:
delta = -delta
self.delta = delta % 360
if not self.sweep:
self.delta -= 360
def point(self, pos):
angle = radians(self.theta + (self.delta * pos))
cosr = cos(radians(self.rotation))
sinr = sin(radians(self.rotation))
x = (cosr * cos(angle) * self.radius.real - sinr * sin(angle) *
self.radius.imag + self.center.real)
y = (sinr * cos(angle) * self.radius.real + cosr * sin(angle) *
self.radius.imag + self.center.imag)
return complex(x, y)
def _tokenize_path(pathdef):
for x in COMMAND_RE.split(pathdef):
if x in COMMANDS:
yield x
for token in FLOAT_RE.findall(x):
yield token
def parse_path(pathdef, pen, current_pos=(0, 0)):
""" Parse SVG path definition (i.e. "d" attribute of <path> elements)
and call a 'pen' object's moveTo, lineTo, curveTo, qCurveTo and closePath
methods.
If 'current_pos' (2-float tuple) is provided, the initial moveTo will
be relative to that instead being absolute.
Arc segments (commands "A" or "a") are not currently supported, and raise
NotImplementedError.
"""
# In the SVG specs, initial movetos are absolute, even if
# specified as 'm'. This is the default behavior here as well.
# But if you pass in a current_pos variable, the initial moveto
# will be relative to that current_pos. This is useful.
current_pos = complex(*current_pos)
elements = list(_tokenize_path(pathdef))
# Reverse for easy use of .pop()
elements.reverse()
start_pos = None
command = None
last_control = None
while elements:
if elements[-1] in COMMANDS:
# New command.
last_command = command # Used by S and T
command = elements.pop()
absolute = command in UPPERCASE
command = command.upper()
else:
# If this element starts with numbers, it is an implicit command
# and we don't change the command. Check that it's allowed:
if command is None:
raise ValueError("Unallowed implicit command in %s, position %s" % (
pathdef, len(pathdef.split()) - len(elements)))
last_command = command # Used by S and T
if command == 'M':
# Moveto command.
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if absolute:
current_pos = pos
else:
current_pos += pos
# M is not preceded by Z; it's an open subpath
if start_pos is not None:
pen.endPath()
pen.moveTo((current_pos.real, current_pos.imag))
# when M is called, reset start_pos
# This behavior of Z is defined in svg spec:
# http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
start_pos = current_pos
# Implicit moveto commands are treated as lineto commands.
# So we set command to lineto here, in case there are
# further implicit commands after this moveto.
command = 'L'
elif command == 'Z':
# Close path
if current_pos != start_pos:
pen.lineTo((start_pos.real, start_pos.imag))
pen.closePath()
current_pos = start_pos
start_pos = None
command = None # You can't have implicit commands after closing.
elif command == 'L':
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if not absolute:
pos += current_pos
pen.lineTo((pos.real, pos.imag))
current_pos = pos
elif command == 'H':
x = elements.pop()
pos = float(x) + current_pos.imag * 1j
if not absolute:
pos += current_pos.real
pen.lineTo((pos.real, pos.imag))
current_pos = pos
elif command == 'V':
y = elements.pop()
pos = current_pos.real + float(y) * 1j
if not absolute:
pos += current_pos.imag * 1j
pen.lineTo((pos.real, pos.imag))
current_pos = pos
elif command == 'C':
control1 = float(elements.pop()) + float(elements.pop()) * 1j
control2 = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control1 += current_pos
control2 += current_pos
end += current_pos
pen.curveTo((control1.real, control1.imag),
(control2.real, control2.imag),
(end.real, end.imag))
current_pos = end
last_control = control2
elif command == 'S':
# Smooth curve. First control point is the "reflection" of
# the second control point in the previous path.
if last_command not in 'CS':
# If there is no previous command or if the previous command
# was not an C, c, S or s, assume the first control point is
# coincident with the current point.
control1 = current_pos
else:
# The first control point is assumed to be the reflection of
# the second control point on the previous command relative
# to the current point.
control1 = current_pos + current_pos - last_control
control2 = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control2 += current_pos
end += current_pos
pen.curveTo((control1.real, control1.imag),
(control2.real, control2.imag),
(end.real, end.imag))
current_pos = end
last_control = control2
elif command == 'Q':
control = float(elements.pop()) + float(elements.pop()) * 1j
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
control += current_pos
end += current_pos
pen.qCurveTo((control.real, control.imag), (end.real, end.imag))
current_pos = end
last_control = control
elif command == 'T':
# Smooth curve. Control point is the "reflection" of
# the second control point in the previous path.
if last_command not in 'QT':
# If there is no previous command or if the previous command
# was not an Q, q, T or t, assume the first control point is
# coincident with the current point.
control = current_pos
else:
# The control point is assumed to be the reflection of
# the control point on the previous command relative
# to the current point.
control = current_pos + current_pos - last_control
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
pen.qCurveTo((control.real, control.imag), (end.real, end.imag))
current_pos = end
last_control = control
elif command == 'A':
# Arc
radius = float(elements.pop()) + float(elements.pop()) * 1j
rotation = float(elements.pop())
arc = float(elements.pop())
sweep = float(elements.pop())
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
if end == 0:
# Guard against a situation where arc start and end being same.
# That results division by zero issues in Arc parameterization.
end = 0.00009
end += current_pos
svg_arc = Arc(current_pos, radius, rotation, arc, sweep, end)
arc_points = [(current_pos.real, current_pos.imag)]
for x in range(1, 5):
# There are infinite points in an arc, but for our context,
# define the arc using 5 points(0.2, 0.4, 0.6...)
arc_point = svg_arc.point(x*0.2)
arc_points.append((arc_point.real, arc_point.imag))
arc_points.append((end.real, end.imag))
pen.qCurveTo(*arc_points)
current_pos = end
# no final Z command, it's an open path
if start_pos is not None:
pen.endPath()