fonttools/Lib/cu2qu/pens.py
Cosimo Lupo ae2eb8d4df cu2qu.pens: make sure closed contour starts with an on-curve
This is still the same contour as before, as UFO spec allows both;
it's just normalized so that the first segments' off-curves appear at
the bottom, and the first point in the contour is an on-curve.
2016-07-21 11:35:41 +01:00

321 lines
12 KiB
Python

from __future__ import print_function, division, absolute_import
from cu2qu import curve_to_quadratic
from fontTools.pens.basePen import AbstractPen, decomposeSuperBezierSegment
try:
from ufoLib.pointPen import AbstractPointPen, BasePointToSegmentPen
from ufoLib.pointPen import PointToSegmentPen, SegmentToPointPen
except ImportError:
from robofab.pens.pointPen import AbstractPointPen, BasePointToSegmentPen
from robofab.pens.adapterPens import PointToSegmentPen, SegmentToPointPen
class Cu2QuPen(AbstractPen):
""" A filter pen to convert cubic bezier curves to quadratic b-splines
using the FontTools SegmentPen protocol.
other_pen: another SegmentPen used to draw the transformed outline.
max_err: maximum approximation error in font units.
reverse_direction: flip the contours' direction but keep starting point.
stats: a dictionary counting the point numbers of quadratic segments.
ignore_single_points: don't emit contours containing only a single point.
"""
def __init__(self, other_pen, max_err, reverse_direction=False,
stats=None, ignore_single_points=False):
if reverse_direction:
self.pen = ReverseContourPen(other_pen)
else:
self.pen = other_pen
self.max_err = max_err
self.stats = stats
self.ignore_single_points = ignore_single_points
self.start_pt = None
self.current_pt = None
def _check_contour_is_open(self):
if self.current_pt is None:
raise AssertionError("moveTo is required")
def _check_contour_is_closed(self):
if self.current_pt is not None:
raise AssertionError("closePath or endPath is required")
def _add_moveTo(self):
if self.start_pt is not None:
self.pen.moveTo(self.start_pt)
self.start_pt = None
def moveTo(self, pt):
self._check_contour_is_closed()
self.start_pt = self.current_pt = pt
if not self.ignore_single_points:
self._add_moveTo()
def lineTo(self, pt):
self._check_contour_is_open()
self._add_moveTo()
self.pen.lineTo(pt)
self.current_pt = pt
def qCurveTo(self, *points):
self._check_contour_is_open()
n = len(points)
if n == 1:
self.lineTo(points[0])
elif n > 1:
self._add_moveTo()
self.pen.qCurveTo(*points)
self.current_pt = points[-1]
else:
raise AssertionError("illegal qcurve segment point count: %d" % n)
def _curve_to_quadratic(self, pt1, pt2, pt3):
curve = (self.current_pt, pt1, pt2, pt3)
quadratic, _ = curve_to_quadratic(curve, self.max_err)
if self.stats is not None:
n = str(len(quadratic))
self.stats[n] = self.stats.get(n, 0) + 1
self.qCurveTo(*quadratic[1:])
def curveTo(self, *points):
self._check_contour_is_open()
n = len(points)
if n == 3:
# this is the most common case, so we special-case it
self._curve_to_quadratic(*points)
elif n > 3:
for segment in decomposeSuperBezierSegment(points):
self._curve_to_quadratic(*segment)
elif n == 2:
self.qCurveTo(*points)
elif n == 1:
self.lineTo(points[0])
else:
raise AssertionError("illegal curve segment point count: %d" % n)
def closePath(self):
self._check_contour_is_open()
if self.start_pt is None:
# if 'start_pt' is _not_ None, we are ignoring single-point paths
self.pen.closePath()
self.current_pt = self.start_pt = None
def endPath(self):
self._check_contour_is_open()
if self.start_pt is None:
self.pen.endPath()
self.current_pt = self.start_pt = None
def addComponent(self, glyphName, transformation):
self._check_contour_is_closed()
self.pen.addComponent(glyphName, transformation)
class Cu2QuPointPen(BasePointToSegmentPen):
""" A filter pen to convert cubic bezier curves to quadratic b-splines
using the RoboFab PointPen protocol.
other_point_pen: another PointPen used to draw the transformed outline.
max_err: maximum approximation error in font units.
reverse_direction: reverse the winding direction of all contours.
stats: a dictionary counting the point numbers of quadratic segments.
"""
def __init__(self, other_point_pen, max_err, reverse_direction=False,
stats=None):
BasePointToSegmentPen.__init__(self)
if reverse_direction:
self.pen = ReverseContourPointPen(other_point_pen)
else:
self.pen = other_point_pen
self.max_err = max_err
self.stats = stats
def _flushContour(self, segments):
assert len(segments) >= 1
closed = segments[0][0] != "move"
new_segments = []
prev_points = segments[-1][1]
prev_on_curve = prev_points[-1][0]
for segment_type, points in segments:
if segment_type == 'curve':
for sub_points in self._split_super_bezier_segments(points):
on_curve, smooth, name, kwargs = sub_points[-1]
bcp1, bcp2 = sub_points[0][0], sub_points[1][0]
cubic = [prev_on_curve, bcp1, bcp2, on_curve]
quad, _ = curve_to_quadratic(cubic, self.max_err)
if self.stats is not None:
n = str(len(quad))
self.stats[n] = self.stats.get(n, 0) + 1
new_points = [(pt, False, None, {}) for pt in quad[1:-1]]
new_points.append((on_curve, smooth, name, kwargs))
new_segments.append(["qcurve", new_points])
prev_on_curve = sub_points[-1][0]
else:
new_segments.append([segment_type, points])
prev_on_curve = points[-1][0]
if closed:
# the BasePointToSegmentPen.endPath method that calls _flushContour
# rotates the point list of closed contours so that they end with
# the first on-curve point. We restore the original starting point.
new_segments = new_segments[-1:] + new_segments[:-1]
self._drawPoints(new_segments)
def _split_super_bezier_segments(self, points):
sub_segments = []
# n is the number of control points
n = len(points) - 1
if n == 2:
# a simple bezier curve segment
sub_segments.append(points)
elif n > 2:
# a "super" bezier; decompose it
on_curve, smooth, name, kwargs = points[-1]
num_sub_segments = n - 1
for i, sub_points in enumerate(decomposeSuperBezierSegment([
pt for pt, _, _, _ in points])):
new_segment = []
for point in sub_points[:-1]:
new_segment.append((point, False, None, {}))
if i == (num_sub_segments - 1):
# the last on-curve keeps its original attributes
new_segment.append((on_curve, smooth, name, kwargs))
else:
# on-curves of sub-segments are always "smooth"
new_segment.append((sub_points[-1], True, None, {}))
sub_segments.append(new_segment)
else:
raise AssertionError(
"expected 2 control points, found: %d" % n)
return sub_segments
def _drawPoints(self, segments):
pen = self.pen
pen.beginPath()
last_offcurves = []
for i, (segment_type, points) in enumerate(segments):
if segment_type in ("move", "line"):
assert len(points) == 1, (
"illegal line segment point count: %d" % len(points))
pt, smooth, name, kwargs = points[0]
pen.addPoint(pt, segment_type, smooth, name, **kwargs)
elif segment_type == "qcurve":
assert len(points) >= 2, (
"illegal qcurve segment point count: %d" % len(points))
offcurves = points[:-1]
if offcurves:
if i == 0:
# any off-curve points preceding the first on-curve
# will be appended at the end of the contour
last_offcurves = offcurves
else:
for (pt, smooth, name, kwargs) in offcurves:
pen.addPoint(pt, None, smooth, name, **kwargs)
pt, smooth, name, kwargs = points[-1]
pen.addPoint(pt, segment_type, smooth, name, **kwargs)
else:
# 'curve' segments must have been converted to 'qcurve' by now
raise AssertionError(
"unexpected segment type: %r" % segment_type)
for (pt, smooth, name, kwargs) in last_offcurves:
pen.addPoint(pt, None, smooth, name, **kwargs)
pen.endPath()
def addComponent(self, baseGlyphName, transformation):
assert self.currentPath is None
self.pen.addComponent(baseGlyphName, transformation)
class ReverseContourPointPen(AbstractPointPen):
"""This is a PointPen that passes outline data to another PointPen, but
reversing the winding direction of all contours. Components are simply
passed through unchanged.
Closed contours are reversed in such a way that the first point remains
the first point.
(Copied from robofab.pens.reverseContourPointPen)
TODO(anthrotype) Move this to future "penBox" package?
"""
def __init__(self, outputPointPen):
self.pen = outputPointPen
# a place to store the points for the current sub path
self.currentContour = None
def _flushContour(self):
pen = self.pen
contour = self.currentContour
if not contour:
pen.beginPath()
pen.endPath()
return
closed = contour[0][1] != "move"
if not closed:
lastSegmentType = "move"
else:
# Remove the first point and insert it at the end. When
# the list of points gets reversed, this point will then
# again be at the start. In other words, the following
# will hold:
# for N in range(len(originalContour)):
# originalContour[N] == reversedContour[-N]
contour.append(contour.pop(0))
# Find the first on-curve point.
firstOnCurve = None
for i in range(len(contour)):
if contour[i][1] is not None:
firstOnCurve = i
break
if firstOnCurve is None:
# There are no on-curve points, be basically have to
# do nothing but contour.reverse().
lastSegmentType = None
else:
lastSegmentType = contour[firstOnCurve][1]
contour.reverse()
if not closed:
# Open paths must start with a move, so we simply dump
# all off-curve points leading up to the first on-curve.
while contour[0][1] is None:
contour.pop(0)
pen.beginPath()
for pt, nextSegmentType, smooth, name in contour:
if nextSegmentType is not None:
segmentType = lastSegmentType
lastSegmentType = nextSegmentType
else:
segmentType = None
pen.addPoint(pt, segmentType=segmentType, smooth=smooth, name=name)
pen.endPath()
def beginPath(self):
assert self.currentContour is None
self.currentContour = []
def endPath(self):
assert self.currentContour is not None
self._flushContour()
self.currentContour = None
def addPoint(self, pt, segmentType=None, smooth=False, name=None, **kwargs):
self.currentContour.append((pt, segmentType, smooth, name))
def addComponent(self, glyphName, transform):
assert self.currentContour is None
self.pen.addComponent(glyphName, transform)
class ReverseContourPen(SegmentToPointPen):
""" Same as 'ReverseContourPointPen' but using the SegmentPen protocol. """
def __init__(self, other_pen):
adapter_point_pen = PointToSegmentPen(other_pen)
reverse_point_pen = ReverseContourPointPen(adapter_point_pen)
SegmentToPointPen.__init__(self, reverse_point_pen)