2022-10-13 10:35:02 -06:00

123 lines
4.5 KiB
Python

from fontTools.varLib.models import supportScalar
def _solvePinned(var, axisTag, axisLimit):
axisMin, axisDef, axisMax = axisLimit
support = {axisTag: var.axes.pop(axisTag)}
scalar = supportScalar({axisTag: axisLimit.default}, support)
if scalar == 0.0:
return []
if scalar != 1.0:
var.scaleDeltas(scalar)
return [var]
def _solveDefaultUnmoved(var, axisTag, axisLimit):
axisMin, axisDef, axisMax = axisLimit
lower, peak, upper = var.axes.get(axisTag)
negative = lower < 0
if negative:
if axisMin == -1.0:
return [var]
elif axisMin == 0.0:
return []
else:
if axisMax == 1.0:
return [var]
elif axisMax == 0.0:
return []
limit = axisMin if negative else axisMax
# Rebase axis bounds onto the new limit, which then becomes the new -1.0 or +1.0.
# The results are always positive, because both dividend and divisor are either
# all positive or all negative.
newLower = lower / limit
newPeak = peak / limit
newUpper = upper / limit
# for negative TupleVariation, swap lower and upper to simplify procedure
if negative:
newLower, newUpper = newUpper, newLower
# special case when innermost bound == peak == limit
if newLower == newPeak == 1.0:
var.axes[axisTag] = (-1.0, -1.0, -1.0) if negative else (1.0, 1.0, 1.0)
return [var]
# case 1: the whole deltaset falls outside the new limit; we can drop it
elif newLower >= 1.0:
return []
# case 2: only the peak and outermost bound fall outside the new limit;
# we keep the deltaset, update peak and outermost bound and and scale deltas
# by the scalar value for the restricted axis at the new limit.
elif newPeak >= 1.0:
scalar = supportScalar({axisTag: limit}, {axisTag: (lower, peak, upper)})
var.scaleDeltas(scalar)
newPeak = 1.0
newUpper = 1.0
if negative:
newLower, newPeak, newUpper = _negate(newUpper, newPeak, newLower)
var.axes[axisTag] = (newLower, newPeak, newUpper)
return [var]
# case 3: peak falls inside but outermost limit still fits within F2Dot14 bounds;
# we keep deltas as is and only scale the axes bounds. Deltas beyond -1.0
# or +1.0 will never be applied as implementations must clamp to that range.
elif newUpper <= 2.0:
if negative:
newLower, newPeak, newUpper = _negate(newUpper, newPeak, newLower)
elif MAX_F2DOT14 < newUpper <= 2.0:
# we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience
newUpper = MAX_F2DOT14
var.axes[axisTag] = (newLower, newPeak, newUpper)
return [var]
# case 4: new limit doesn't fit; we need to chop the deltaset into two 'tents',
# because the shape of a triangle with part of one side cut off cannot be
# represented as a triangle itself. It can be represented as sum of two triangles.
# NOTE: This increases the file size!
else:
# duplicate the tent, then adjust lower/peak/upper so that the outermost limit
# of the original tent is +/-2.0, whereas the new tent's starts as the old
# one peaks and maxes out at +/-1.0.
newVar = TupleVariation(var.axes, var.coordinates)
if negative:
var.axes[axisTag] = (-2.0, -1 * newPeak, -1 * newLower)
newVar.axes[axisTag] = (-1.0, -1.0, -1 * newPeak)
else:
var.axes[axisTag] = (newLower, newPeak, MAX_F2DOT14)
newVar.axes[axisTag] = (newPeak, 1.0, 1.0)
# the new tent's deltas are scaled by the difference between the scalar value
# for the old tent at the desired limit...
scalar1 = supportScalar({axisTag: limit}, {axisTag: (lower, peak, upper)})
# ... and the scalar value for the clamped tent (with outer limit +/-2.0),
# which can be simplified like this:
scalar2 = 1 / (2 - newPeak)
newVar.scaleDeltas(scalar1 - scalar2)
return [var, newVar]
def _solveDefaultUnmoved(var, axisTag, axisLimit):
raise NotImplementedError
def changeTupleVariationAxisLimit(var, axisTag, axisLimit):
axisMin, axisDef, axisMax = axisLimit
assert -1 <= axisMin <= axisDef <= axisMax <= +1
# Get the pinned case out of the way
if axisMin == axisMax:
return _solvePinned(var, axisTag, axisLimit)
# If default isn't moving, get that out of the way as well
if axisDef == 0:
return _solveDefaultUnmoved(var, axisTag, axisLimit)
return _solveGeneral(var, axisTag, axisLimit)