fonttools/Tests/varLib/models_test.py
Behdad Esfahbod 3325b47606
Merge pull request #2717 from fonttools/varLib-narrow
[varLib.models] Generate narrower tents
2022-08-16 12:46:22 -06:00

186 lines
6.6 KiB
Python

from fontTools.varLib.models import (
normalizeLocation, supportScalar, VariationModel, VariationModelError)
import pytest
def test_normalizeLocation():
axes = {"wght": (100, 400, 900)}
assert normalizeLocation({"wght": 400}, axes) == {'wght': 0.0}
assert normalizeLocation({"wght": 100}, axes) == {'wght': -1.0}
assert normalizeLocation({"wght": 900}, axes) == {'wght': 1.0}
assert normalizeLocation({"wght": 650}, axes) == {'wght': 0.5}
assert normalizeLocation({"wght": 1000}, axes) == {'wght': 1.0}
assert normalizeLocation({"wght": 0}, axes) == {'wght': -1.0}
axes = {"wght": (0, 0, 1000)}
assert normalizeLocation({"wght": 0}, axes) == {'wght': 0.0}
assert normalizeLocation({"wght": -1}, axes) == {'wght': 0.0}
assert normalizeLocation({"wght": 1000}, axes) == {'wght': 1.0}
assert normalizeLocation({"wght": 500}, axes) == {'wght': 0.5}
assert normalizeLocation({"wght": 1001}, axes) == {'wght': 1.0}
axes = {"wght": (0, 1000, 1000)}
assert normalizeLocation({"wght": 0}, axes) == {'wght': -1.0}
assert normalizeLocation({"wght": -1}, axes) == {'wght': -1.0}
assert normalizeLocation({"wght": 500}, axes) == {'wght': -0.5}
assert normalizeLocation({"wght": 1000}, axes) == {'wght': 0.0}
assert normalizeLocation({"wght": 1001}, axes) == {'wght': 0.0}
def test_supportScalar():
assert supportScalar({}, {}) == 1.0
assert supportScalar({'wght':.2}, {}) == 1.0
assert supportScalar({'wght':.2}, {'wght':(0,2,3)}) == 0.1
assert supportScalar({'wght':2.5}, {'wght':(0,2,4)}) == 0.75
@pytest.mark.parametrize(
"numLocations, numSamples", [
pytest.param(127, 509, marks=pytest.mark.slow),
(31, 251),
]
)
def test_modeling_error(numLocations, numSamples):
# https://github.com/fonttools/fonttools/issues/2213
locations = [{'axis': float(i)/numLocations} for i in range(numLocations)]
masterValues = [100. if i else 0. for i in range(numLocations)]
model = VariationModel(locations)
for i in range(numSamples):
loc = {'axis': float(i)/numSamples}
scalars = model.getScalars(loc)
deltas_float = model.getDeltas(masterValues)
deltas_round = model.getDeltas(masterValues, round=round)
expected = model.interpolateFromDeltasAndScalars(deltas_float, scalars)
actual = model.interpolateFromDeltasAndScalars(deltas_round, scalars)
err = abs(actual - expected)
assert err <= .5, (i, err)
# This is how NOT to round deltas.
#deltas_late_round = [round(d) for d in deltas_float]
#bad = model.interpolateFromDeltasAndScalars(deltas_late_round, scalars)
#err_bad = abs(bad - expected)
#if err != err_bad:
# print("{:d} {:.2} {:.2}".format(i, err, err_bad))
class VariationModelTest(object):
@pytest.mark.parametrize(
"locations, axisOrder, sortedLocs, supports, deltaWeights",
[
(
[
{'wght': 0.55, 'wdth': 0.0},
{'wght': -0.55, 'wdth': 0.0},
{'wght': -1.0, 'wdth': 0.0},
{'wght': 0.0, 'wdth': 1.0},
{'wght': 0.66, 'wdth': 1.0},
{'wght': 0.66, 'wdth': 0.66},
{'wght': 0.0, 'wdth': 0.0},
{'wght': 1.0, 'wdth': 1.0},
{'wght': 1.0, 'wdth': 0.0},
],
["wght"],
[
{},
{'wght': -0.55},
{'wght': -1.0},
{'wght': 0.55},
{'wght': 1.0},
{'wdth': 1.0},
{'wdth': 1.0, 'wght': 1.0},
{'wdth': 1.0, 'wght': 0.66},
{'wdth': 0.66, 'wght': 0.66}
],
[
{},
{'wght': (-1.0, -0.55, 0)},
{'wght': (-1.0, -1.0, -0.55)},
{'wght': (0, 0.55, 1.0)},
{'wght': (0.55, 1.0, 1.0)},
{'wdth': (0, 1.0, 1.0)},
{'wdth': (0, 1.0, 1.0), 'wght': (0.66, 1.0, 1.0)},
{'wdth': (0.66, 1.0, 1.0), 'wght': (0, 0.66, 1.0)},
{'wdth': (0, 0.66, 1.0), 'wght': (0, 0.66, 1.0)}
],
[
{},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0,
4: 1.0,
5: 1.0},
{0: 1.0,
3: 0.7555555555555555,
4: 0.24444444444444444,
5: 1.0},
{0: 1.0,
3: 0.7555555555555555,
4: 0.24444444444444444,
5: 0.66}
]
),
(
[
{},
{'bar': 0.5},
{'bar': 1.0},
{'foo': 1.0},
{'bar': 0.5, 'foo': 1.0},
{'bar': 1.0, 'foo': 1.0},
],
None,
[
{},
{'bar': 0.5},
{'bar': 1.0},
{'foo': 1.0},
{'bar': 0.5, 'foo': 1.0},
{'bar': 1.0, 'foo': 1.0},
],
[
{},
{'bar': (0, 0.5, 1.0)},
{'bar': (0.5, 1.0, 1.0)},
{'foo': (0, 1.0, 1.0)},
{'bar': (0, 0.5, 1.0), 'foo': (0, 1.0, 1.0)},
{'bar': (0.5, 1.0, 1.0), 'foo': (0, 1.0, 1.0)},
],
[
{},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0, 1: 1.0, 3: 1.0},
{0: 1.0, 2: 1.0, 3: 1.0},
],
)
]
)
def test_init(
self, locations, axisOrder, sortedLocs, supports, deltaWeights
):
model = VariationModel(locations, axisOrder=axisOrder)
assert model.locations == sortedLocs
assert model.supports == supports
assert model.deltaWeights == deltaWeights
def test_init_duplicate_locations(self):
with pytest.raises(VariationModelError, match="Locations must be unique."):
VariationModel(
[
{"foo": 0.0, "bar": 0.0},
{"foo": 1.0, "bar": 1.0},
{"bar": 1.0, "foo": 1.0},
]
)