Behdad Esfahbod 0ecf5c5c94 [varLib.models] Refine modeling one last time
In a523a697164a4 I changed the model such that when computing master
supports and we hit another master, cut the box in one dimension only,
to avoid interferring with other master.  The axis to cut against was
chosen as axis that minimizes volume loss.  That was fine in a sense,
but missed a great amount of information resulting from relative
positioning of the two masters.  As such, it could not distinguish
between the following two situations:

behdad:fonttools 0 (master*)$ ./fonttools varLib.models 0,0 0,1 1,0 1,1 .5,.5 .55,.75
Sorted locations:
[{},
 {'A': 1.0},
 {'B': 1.0},
 {'A': 1.0, 'B': 1.0},
 {'A': 0.5, 'B': 0.5},
 {'A': 0.55, 'B': 0.75}]
Supports:
[{},
 {'A': (0, 1.0, 1.0)},
 {'B': (0, 1.0, 1.0)},
 {'A': (0, 1.0, 1.0), 'B': (0, 1.0, 1.0)},
 {'A': (0, 0.5, 1.0), 'B': (0, 0.5, 1.0)},
 {'A': (0, 0.55, 1.0), 'B': (0.5, 0.75, 1.0)}]
behdad:fonttools 0 (02616ab...)$ ./fonttools varLib.models 0,0 0,1 1,0 1,1 .5,.5 .75,.55
Sorted locations:
[{},
 {'A': 1.0},
 {'B': 1.0},
 {'A': 1.0, 'B': 1.0},
 {'A': 0.5, 'B': 0.5},
 {'A': 0.75, 'B': 0.55}]
Supports:
[{},
 {'A': (0, 1.0, 1.0)},
 {'B': (0, 1.0, 1.0)},
 {'A': (0, 1.0, 1.0), 'B': (0, 1.0, 1.0)},
 {'A': (0, 0.5, 1.0), 'B': (0, 0.5, 1.0)},
 {'A': (0, 0.75, 1.0), 'B': (0.5, 0.55, 1.0)}]

Check the last line. In both cases the box was cut against the second axis.
After this change, we get:

behdad:fonttools 0 (master)$ ./fonttools varLib.models 0,0 0,1 1,0 1,1 .5,.5 .55,.75
Sorted locations:
[{},
 {'A': 1.0},
 {'B': 1.0},
 {'A': 1.0, 'B': 1.0},
 {'A': 0.5, 'B': 0.5},
 {'A': 0.55, 'B': 0.75}]
Supports:
[{},
 {'A': (0, 1.0, 1.0)},
 {'B': (0, 1.0, 1.0)},
 {'A': (0, 1.0, 1.0), 'B': (0, 1.0, 1.0)},
 {'A': (0, 0.5, 1.0), 'B': (0, 0.5, 1.0)},
 {'A': (0, 0.55, 1.0), 'B': (0.5, 0.75, 1.0)}]
behdad:fonttools 0 (master)$ ./fonttools varLib.models 0,0 0,1 1,0 1,1 .5,.5 .75,.55
Sorted locations:
[{},
 {'A': 1.0},
 {'B': 1.0},
 {'A': 1.0, 'B': 1.0},
 {'A': 0.5, 'B': 0.5},
 {'A': 0.75, 'B': 0.55}]
Supports:
[{},
 {'A': (0, 1.0, 1.0)},
 {'B': (0, 1.0, 1.0)},
 {'A': (0, 1.0, 1.0), 'B': (0, 1.0, 1.0)},
 {'A': (0, 0.5, 1.0), 'B': (0, 0.5, 1.0)},
 {'A': (0.5, 0.75, 1.0), 'B': (0, 0.55, 1.0)}]

Just draw the boxes on a piece of napkin and convince yourself that this
is a good change.

If the ratios are equal, we cut against the first axis in the axisOrder:

behdad:fonttools 0 (master)$ ./fonttools varLib.models 0,0 0,1 1,0 1,1 .5,.5 .75,.75
Sorted locations:
[{},
 {'A': 1.0},
 {'B': 1.0},
 {'A': 1.0, 'B': 1.0},
 {'A': 0.5, 'B': 0.5},
 {'A': 0.75, 'B': 0.75}]
Supports:
[{},
 {'A': (0, 1.0, 1.0)},
 {'B': (0, 1.0, 1.0)},
 {'A': (0, 1.0, 1.0), 'B': (0, 1.0, 1.0)},
 {'A': (0, 0.5, 1.0), 'B': (0, 0.5, 1.0)},
 {'A': (0.5, 0.75, 1.0), 'B': (0, 0.75, 1.0)}]
2018-04-27 16:50:32 -07:00

366 lines
10 KiB
Python

"""Variation fonts interpolation models."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
__all__ = ['normalizeValue', 'normalizeLocation', 'supportScalar', 'VariationModel']
def normalizeValue(v, triple):
"""Normalizes value based on a min/default/max triple.
>>> normalizeValue(400, (100, 400, 900))
0.0
>>> normalizeValue(100, (100, 400, 900))
-1.0
>>> normalizeValue(650, (100, 400, 900))
0.5
"""
lower, default, upper = triple
assert lower <= default <= upper, "invalid axis values: %3.3f, %3.3f %3.3f"%(lower, default, upper)
v = max(min(v, upper), lower)
if v == default:
v = 0.
elif v < default:
v = (v - default) / (default - lower)
else:
v = (v - default) / (upper - default)
return v
def normalizeLocation(location, axes):
"""Normalizes location based on axis min/default/max values from axes.
>>> axes = {"wght": (100, 400, 900)}
>>> normalizeLocation({"wght": 400}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 100}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": 900}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 650}, axes)
{'wght': 0.5}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': -1.0}
>>> axes = {"wght": (0, 0, 1000)}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": -1}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 500}, axes)
{'wght': 0.5}
>>> normalizeLocation({"wght": 1001}, axes)
{'wght': 1.0}
>>> axes = {"wght": (0, 1000, 1000)}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": -1}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": 500}, axes)
{'wght': -0.5}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 1001}, axes)
{'wght': 0.0}
"""
out = {}
for tag,triple in axes.items():
v = location.get(tag, triple[1])
out[tag] = normalizeValue(v, triple)
return out
def supportScalar(location, support, ot=True):
"""Returns the scalar multiplier at location, for a master
with support. If ot is True, then a peak value of zero
for support of an axis means "axis does not participate". That
is how OpenType Variation Font technology works.
>>> supportScalar({}, {})
1.0
>>> supportScalar({'wght':.2}, {})
1.0
>>> supportScalar({'wght':.2}, {'wght':(0,2,3)})
0.1
>>> supportScalar({'wght':2.5}, {'wght':(0,2,4)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False)
0.375
>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
"""
scalar = 1.
for axis,(lower,peak,upper) in support.items():
if ot:
# OpenType-specific case handling
if peak == 0.:
continue
if lower > peak or peak > upper:
continue
if lower < 0. and upper > 0.:
continue
v = location.get(axis, 0.)
else:
assert axis in location
v = location[axis]
if v == peak:
continue
if v <= lower or upper <= v:
scalar = 0.
break;
if v < peak:
scalar *= (v - lower) / (peak - lower)
else: # v > peak
scalar *= (v - upper) / (peak - upper)
return scalar
class VariationModel(object):
"""
Locations must be in normalized space. Ie. base master
is at origin (0).
>>> from pprint import pprint
>>> locations = [ \
{'wght':100}, \
{'wght':-100}, \
{'wght':-180}, \
{'wdth':+.3}, \
{'wght':+120,'wdth':.3}, \
{'wght':+120,'wdth':.2}, \
{}, \
{'wght':+180,'wdth':.3}, \
{'wght':+180}, \
]
>>> model = VariationModel(locations, axisOrder=['wght'])
>>> pprint(model.locations)
[{},
{'wght': -100},
{'wght': -180},
{'wght': 100},
{'wght': 180},
{'wdth': 0.3},
{'wdth': 0.3, 'wght': 180},
{'wdth': 0.3, 'wght': 120},
{'wdth': 0.2, 'wght': 120}]
>>> pprint(model.deltaWeights)
[{},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0, 4: 1.0, 5: 1.0},
{0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.6666666666666666},
{0: 1.0,
3: 0.75,
4: 0.25,
5: 0.6666666666666667,
6: 0.4444444444444445,
7: 0.6666666666666667}]
"""
def __init__(self, locations, axisOrder=[]):
locations = [{k:v for k,v in loc.items() if v != 0.} for loc in locations]
keyFunc = self.getMasterLocationsSortKeyFunc(locations, axisOrder=axisOrder)
axisPoints = keyFunc.axisPoints
self.locations = sorted(locations, key=keyFunc)
# TODO Assert that locations are unique.
self.mapping = [self.locations.index(l) for l in locations] # Mapping from user's master order to our master order
self.reverseMapping = [locations.index(l) for l in self.locations] # Reverse of above
self._computeMasterSupports(axisPoints, axisOrder)
@staticmethod
def getMasterLocationsSortKeyFunc(locations, axisOrder=[]):
assert {} in locations, "Base master not found."
axisPoints = {}
for loc in locations:
if len(loc) != 1:
continue
axis = next(iter(loc))
value = loc[axis]
if axis not in axisPoints:
axisPoints[axis] = {0.}
assert value not in axisPoints[axis]
axisPoints[axis].add(value)
def getKey(axisPoints, axisOrder):
def sign(v):
return -1 if v < 0 else +1 if v > 0 else 0
def key(loc):
rank = len(loc)
onPointAxes = [axis for axis,value in loc.items() if value in axisPoints[axis]]
orderedAxes = [axis for axis in axisOrder if axis in loc]
orderedAxes.extend([axis for axis in sorted(loc.keys()) if axis not in axisOrder])
return (
rank, # First, order by increasing rank
-len(onPointAxes), # Next, by decreasing number of onPoint axes
tuple(axisOrder.index(axis) if axis in axisOrder else 0x10000 for axis in orderedAxes), # Next, by known axes
tuple(orderedAxes), # Next, by all axes
tuple(sign(loc[axis]) for axis in orderedAxes), # Next, by signs of axis values
tuple(abs(loc[axis]) for axis in orderedAxes), # Next, by absolute value of axis values
)
return key
ret = getKey(axisPoints, axisOrder)
ret.axisPoints = axisPoints
return ret
@staticmethod
def lowerBound(value, lst):
if any(v < value for v in lst):
return max(v for v in lst if v < value)
else:
return value
@staticmethod
def upperBound(value, lst):
if any(v > value for v in lst):
return min(v for v in lst if v > value)
else:
return value
def _computeMasterSupports(self, axisPoints, axisOrder):
supports = []
deltaWeights = []
locations = self.locations
for i,loc in enumerate(locations):
box = {}
# Account for axisPoints first
for axis,values in axisPoints.items():
if not axis in loc:
continue
locV = loc[axis]
if locV > 0:
box[axis] = (0, locV, max({locV}|values))
else:
box[axis] = (min({locV}|values), locV, 0)
locAxes = set(loc.keys())
# Walk over previous masters now
for j,m in enumerate(locations[:i]):
# Master with extra axes do not participte
if not set(m.keys()).issubset(locAxes):
continue
# If it's NOT in the current box, it does not participate
relevant = True
for axis, (lower,_,upper) in box.items():
if axis not in m or not (lower < m[axis] < upper):
relevant = False
break
if not relevant:
continue
# Split the box for new master; split in whatever direction
# that has largest range ratio. See commit for details.
orderedAxes = [axis for axis in axisOrder if axis in m.keys()]
orderedAxes.extend([axis for axis in sorted(m.keys()) if axis not in axisOrder])
bestAxis = None
bestPercentage = -1
for axis in orderedAxes:
val = m[axis]
assert axis in box
lower,locV,upper = box[axis]
newLower, newUpper = lower, upper
if val < locV:
newLower = val
percentage = (val - locV) / (lower - locV)
elif locV < val:
newUpper = val
percentage = (val - locV) / (upper - locV)
if percentage > bestPercentage:
bestPercentage = percentage
bestAxis = axis
bestLower = newLower
bestUpper = newUpper
bestLocV = locV
if bestAxis:
box[bestAxis] = (bestLower,bestLocV,bestUpper)
supports.append(box)
deltaWeight = {}
# Walk over previous masters now, populate deltaWeight
for j,m in enumerate(locations[:i]):
scalar = supportScalar(loc, supports[j])
if scalar:
deltaWeight[j] = scalar
deltaWeights.append(deltaWeight)
self.supports = supports
self.deltaWeights = deltaWeights
def getDeltas(self, masterValues):
assert len(masterValues) == len(self.deltaWeights)
mapping = self.reverseMapping
out = []
for i,weights in enumerate(self.deltaWeights):
delta = masterValues[mapping[i]]
for j,weight in weights.items():
try:
delta -= out[j] * weight
except OverflowError:
# if it doesn't fit signed shorts, retry with doubles
delta._ensureFloat()
delta -= out[j] * weight
out.append(delta)
return out
def getScalars(self, loc):
return [supportScalar(loc, support) for support in self.supports]
@staticmethod
def interpolateFromDeltasAndScalars(deltas, scalars):
v = None
assert len(deltas) == len(scalars)
for i,(delta,scalar) in enumerate(zip(deltas, scalars)):
if not scalar: continue
contribution = delta * scalar
if v is None:
v = contribution
else:
v += contribution
return v
def interpolateFromDeltas(self, loc, deltas):
scalars = self.getScalars(loc)
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def interpolateFromMasters(self, loc, masterValues):
deltas = self.getDeltas(masterValues)
return self.interpolateFromDeltas(loc, deltas)
def interpolateFromMastersAndScalars(self, masterValues, scalars):
deltas = self.getDeltas(masterValues)
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def main(args):
from fontTools import configLogger
args = args[1:]
# TODO: allow user to configure logging via command-line options
configLogger(level="INFO")
axes = [chr(c) for c in range(ord('A'), ord('Z')+1)]
locs = [dict(zip(axes, (float(v) for v in s.split(',')))) for s in args]
model = VariationModel(locs)
from pprint import pprint
print("Sorted locations:")
pprint(model.locations)
print("Supports:")
pprint(model.supports)
if __name__ == "__main__":
import doctest, sys
if len(sys.argv) > 1:
sys.exit(main(sys.argv))
sys.exit(doctest.testmod().failed)