ReadRoberts 29b1246515 [varlib] Move master list reordering into models.py
It is useful to re-order the CFF2 master font list to match the sorted location order, but doing so means touching internal fields of the model, so we'll move this into the VariationModel class.
2018-11-30 09:12:27 -08:00

464 lines
13 KiB
Python

"""Variation fonts interpolation models."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
__all__ = ['nonNone', 'allNone', 'allEqual', 'allEqualTo', 'subList',
'normalizeValue', 'normalizeLocation',
'supportScalar',
'VariationModel']
def nonNone(lst):
return [l for l in lst if l is not None]
def allNone(lst):
return all(l is None for l in lst)
def allEqualTo(ref, lst, mapper=None):
if mapper is None:
return all(ref == item for item in lst)
else:
mapped = mapper(ref)
return all(mapped == mapper(item) for item in lst)
def allEqual(lst, mapper=None):
if not lst:
return True
it = iter(lst)
first = next(it)
return allEqualTo(first, it, mapper=mapper)
def subList(truth, lst):
assert len(truth) == len(lst)
return [l for l,t in zip(lst,truth) if t]
def normalizeValue(v, triple):
"""Normalizes value based on a min/default/max triple.
>>> normalizeValue(400, (100, 400, 900))
0.0
>>> normalizeValue(100, (100, 400, 900))
-1.0
>>> normalizeValue(650, (100, 400, 900))
0.5
"""
lower, default, upper = triple
assert lower <= default <= upper, "invalid axis values: %3.3f, %3.3f %3.3f"%(lower, default, upper)
v = max(min(v, upper), lower)
if v == default:
v = 0.
elif v < default:
v = (v - default) / (default - lower)
else:
v = (v - default) / (upper - default)
return v
def normalizeLocation(location, axes):
"""Normalizes location based on axis min/default/max values from axes.
>>> axes = {"wght": (100, 400, 900)}
>>> normalizeLocation({"wght": 400}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 100}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": 900}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 650}, axes)
{'wght': 0.5}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': -1.0}
>>> axes = {"wght": (0, 0, 1000)}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": -1}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 500}, axes)
{'wght': 0.5}
>>> normalizeLocation({"wght": 1001}, axes)
{'wght': 1.0}
>>> axes = {"wght": (0, 1000, 1000)}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": -1}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": 500}, axes)
{'wght': -0.5}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 1001}, axes)
{'wght': 0.0}
"""
out = {}
for tag,triple in axes.items():
v = location.get(tag, triple[1])
out[tag] = normalizeValue(v, triple)
return out
def supportScalar(location, support, ot=True):
"""Returns the scalar multiplier at location, for a master
with support. If ot is True, then a peak value of zero
for support of an axis means "axis does not participate". That
is how OpenType Variation Font technology works.
>>> supportScalar({}, {})
1.0
>>> supportScalar({'wght':.2}, {})
1.0
>>> supportScalar({'wght':.2}, {'wght':(0,2,3)})
0.1
>>> supportScalar({'wght':2.5}, {'wght':(0,2,4)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False)
0.375
>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
"""
scalar = 1.
for axis,(lower,peak,upper) in support.items():
if ot:
# OpenType-specific case handling
if peak == 0.:
continue
if lower > peak or peak > upper:
continue
if lower < 0. and upper > 0.:
continue
v = location.get(axis, 0.)
else:
assert axis in location
v = location[axis]
if v == peak:
continue
if v <= lower or upper <= v:
scalar = 0.
break;
if v < peak:
scalar *= (v - lower) / (peak - lower)
else: # v > peak
scalar *= (v - upper) / (peak - upper)
return scalar
class VariationModel(object):
"""
Locations must be in normalized space. Ie. base master
is at origin (0).
>>> from pprint import pprint
>>> locations = [ \
{'wght':100}, \
{'wght':-100}, \
{'wght':-180}, \
{'wdth':+.3}, \
{'wght':+120,'wdth':.3}, \
{'wght':+120,'wdth':.2}, \
{}, \
{'wght':+180,'wdth':.3}, \
{'wght':+180}, \
]
>>> model = VariationModel(locations, axisOrder=['wght'])
>>> pprint(model.locations)
[{},
{'wght': -100},
{'wght': -180},
{'wght': 100},
{'wght': 180},
{'wdth': 0.3},
{'wdth': 0.3, 'wght': 180},
{'wdth': 0.3, 'wght': 120},
{'wdth': 0.2, 'wght': 120}]
>>> pprint(model.deltaWeights)
[{},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0, 4: 1.0, 5: 1.0},
{0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.6666666666666666},
{0: 1.0,
3: 0.75,
4: 0.25,
5: 0.6666666666666667,
6: 0.4444444444444445,
7: 0.6666666666666667}]
"""
def __init__(self, locations, axisOrder=[]):
self.origLocations = locations
self.axisOrder = axisOrder
locations = [{k:v for k,v in loc.items() if v != 0.} for loc in locations]
keyFunc = self.getMasterLocationsSortKeyFunc(locations, axisOrder=axisOrder)
axisPoints = keyFunc.axisPoints
self.locations = sorted(locations, key=keyFunc)
# TODO Assert that locations are unique.
self.mapping = [self.locations.index(l) for l in locations] # Mapping from user's master order to our master order
self.reverseMapping = [locations.index(l) for l in self.locations] # Reverse of above
self._computeMasterSupports(axisPoints, axisOrder)
self._subModels = {}
def getSubModel(self, items):
if None not in items:
return self, items
key = tuple(v is not None for v in items)
subModel = self._subModels.get(key)
if subModel is None:
subModel = VariationModel(subList(key, self.origLocations), self.axisOrder)
self._subModels[key] = subModel
return subModel, subList(key, items)
@staticmethod
def getMasterLocationsSortKeyFunc(locations, axisOrder=[]):
assert {} in locations, "Base master not found."
axisPoints = {}
for loc in locations:
if len(loc) != 1:
continue
axis = next(iter(loc))
value = loc[axis]
if axis not in axisPoints:
axisPoints[axis] = {0.}
assert value not in axisPoints[axis], (
'Value "%s" in axisPoints["%s"] --> %s' % (value, axis, axisPoints)
)
axisPoints[axis].add(value)
def getKey(axisPoints, axisOrder):
def sign(v):
return -1 if v < 0 else +1 if v > 0 else 0
def key(loc):
rank = len(loc)
onPointAxes = [axis for axis,value in loc.items() if value in axisPoints[axis]]
orderedAxes = [axis for axis in axisOrder if axis in loc]
orderedAxes.extend([axis for axis in sorted(loc.keys()) if axis not in axisOrder])
return (
rank, # First, order by increasing rank
-len(onPointAxes), # Next, by decreasing number of onPoint axes
tuple(axisOrder.index(axis) if axis in axisOrder else 0x10000 for axis in orderedAxes), # Next, by known axes
tuple(orderedAxes), # Next, by all axes
tuple(sign(loc[axis]) for axis in orderedAxes), # Next, by signs of axis values
tuple(abs(loc[axis]) for axis in orderedAxes), # Next, by absolute value of axis values
)
return key
ret = getKey(axisPoints, axisOrder)
ret.axisPoints = axisPoints
return ret
@staticmethod
def lowerBound(value, lst):
if any(v < value for v in lst):
return max(v for v in lst if v < value)
else:
return value
@staticmethod
def upperBound(value, lst):
if any(v > value for v in lst):
return min(v for v in lst if v > value)
else:
return value
def reorderMasters(self, master_list):
# Re-order the master item list from the original master font
# list order to the sorted location order. This puts the
# default master first, and makes building up the blend data
# simpler in some workflows, such as for CFF2 charstrrings.
new_list = [master_list[idx] for idx in self.reverseMapping]
self.origLocations = [self.origLocations[idx] for idx in self.reverseMapping]
self.mapping = self.reverseMapping = range(len(master_list))
self._subModels = {}
return new_list
def _computeMasterSupports(self, axisPoints, axisOrder):
supports = []
deltaWeights = []
locations = self.locations
# Compute min/max across each axis, use it as total range.
# TODO Take this as input from outside?
minV = {}
maxV = {}
for l in locations:
for k,v in l.items():
minV[k] = min(v, minV.get(k, v))
maxV[k] = max(v, maxV.get(k, v))
for i,loc in enumerate(locations):
box = {}
for axis,locV in loc.items():
if locV > 0:
box[axis] = (0, locV, maxV[axis])
else:
box[axis] = (minV[axis], locV, 0)
locAxes = set(loc.keys())
# Walk over previous masters now
for j,m in enumerate(locations[:i]):
# Master with extra axes do not participte
if not set(m.keys()).issubset(locAxes):
continue
# If it's NOT in the current box, it does not participate
relevant = True
for axis, (lower,peak,upper) in box.items():
if axis not in m or not (m[axis] == peak or lower < m[axis] < upper):
relevant = False
break
if not relevant:
continue
# Split the box for new master; split in whatever direction
# that has largest range ratio.
#
# For symmetry, we actually cut across multiple axes
# if they have the largest, equal, ratio.
# https://github.com/fonttools/fonttools/commit/7ee81c8821671157968b097f3e55309a1faa511e#commitcomment-31054804
bestAxes = {}
bestRatio = -1
for axis in m.keys():
val = m[axis]
assert axis in box
lower,locV,upper = box[axis]
newLower, newUpper = lower, upper
if val < locV:
newLower = val
ratio = (val - locV) / (lower - locV)
elif locV < val:
newUpper = val
ratio = (val - locV) / (upper - locV)
else: # val == locV
# Can't split box in this direction.
continue
if ratio > bestRatio:
bestAxes = {}
bestRatio = ratio
if ratio == bestRatio:
bestAxes[axis] = (newLower, locV, newUpper)
for axis,triple in bestAxes.items ():
box[axis] = triple
supports.append(box)
deltaWeight = {}
# Walk over previous masters now, populate deltaWeight
for j,m in enumerate(locations[:i]):
scalar = supportScalar(loc, supports[j])
if scalar:
deltaWeight[j] = scalar
deltaWeights.append(deltaWeight)
self.supports = supports
self.deltaWeights = deltaWeights
def getDeltas(self, masterValues):
assert len(masterValues) == len(self.deltaWeights)
mapping = self.reverseMapping
out = []
for i,weights in enumerate(self.deltaWeights):
delta = masterValues[mapping[i]]
for j,weight in weights.items():
delta -= out[j] * weight
out.append(delta)
return out
def getDeltasAndSupports(self, items):
model, items = self.getSubModel(items)
return model.getDeltas(items), model.supports
def getScalars(self, loc):
return [supportScalar(loc, support) for support in self.supports]
@staticmethod
def interpolateFromDeltasAndScalars(deltas, scalars):
v = None
assert len(deltas) == len(scalars)
for i,(delta,scalar) in enumerate(zip(deltas, scalars)):
if not scalar: continue
contribution = delta * scalar
if v is None:
v = contribution
else:
v += contribution
return v
def interpolateFromDeltas(self, loc, deltas):
scalars = self.getScalars(loc)
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def interpolateFromMasters(self, loc, masterValues):
deltas = self.getDeltas(masterValues)
return self.interpolateFromDeltas(loc, deltas)
def interpolateFromMastersAndScalars(self, masterValues, scalars):
deltas = self.getDeltas(masterValues)
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def piecewiseLinearMap(v, mapping):
keys = mapping.keys()
if not keys:
return v
if v in keys:
return mapping[v]
k = min(keys)
if v < k:
return v + mapping[k] - k
k = max(keys)
if v > k:
return v + mapping[k] - k
# Interpolate
a = max(k for k in keys if k < v)
b = min(k for k in keys if k > v)
va = mapping[a]
vb = mapping[b]
return va + (vb - va) * (v - a) / (b - a)
def main(args):
from fontTools import configLogger
args = args[1:]
# TODO: allow user to configure logging via command-line options
configLogger(level="INFO")
if len(args) < 1:
print("usage: fonttools varLib.models source.designspace", file=sys.stderr)
print(" or")
print("usage: fonttools varLib.models location1 location2 ...", file=sys.stderr)
sys.exit(1)
from pprint import pprint
if len(args) == 1 and args[0].endswith('.designspace'):
from fontTools.designspaceLib import DesignSpaceDocument
doc = DesignSpaceDocument()
doc.read(args[0])
locs = [s.location for s in doc.sources]
print("Original locations:")
pprint(locs)
doc.normalize()
print("Normalized locations:")
pprint(locs)
else:
axes = [chr(c) for c in range(ord('A'), ord('Z')+1)]
locs = [dict(zip(axes, (float(v) for v in s.split(',')))) for s in args]
model = VariationModel(locs)
print("Sorted locations:")
pprint(model.locations)
print("Supports:")
pprint(model.supports)
if __name__ == "__main__":
import doctest, sys
if len(sys.argv) > 1:
sys.exit(main(sys.argv))
sys.exit(doctest.testmod().failed)