* Removed `CFFContext` * Added `isCFF2` argument to CFFFontSet.decompile/compile, used from respective ttLib classes * Index classes get a `isCFF2` argument in constructor (used for decompiling); must be True/False if `file` argument is not None; it is stored as self._isCFF2 to support lazy loading * Removed `TopDictData` class; reuse same `TopDictIndexCompiler` for both CFF and CFF2 * `CFFWriter` and all `*Compiler` classes get an `isCFF2` argument; defaults to the parent compiler's `isCFF2` attribute * Removed `size` argument from `produceItem` method as unused and useless (`len(data)` is the same) * psCharStrings: removed useless ByteCodeBase class * A reference to the TopDict's VarStoreData is passed down to all the FontDicts' PrivateDict, so it can be used to get the number of regions while decompiling blend and vsindex operators See dicussion: https://github.com/fonttools/fonttools/pull/968#issuecomment-309920007
1299 lines
32 KiB
Python
1299 lines
32 KiB
Python
"""psCharStrings.py -- module implementing various kinds of CharStrings:
|
|
CFF dictionary data and Type1/Type2 CharStrings.
|
|
"""
|
|
|
|
from __future__ import print_function, division, absolute_import
|
|
from fontTools.misc.py23 import *
|
|
from fontTools.misc.fixedTools import fixedToFloat
|
|
import struct
|
|
import logging
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def read_operator(self, b0, data, index):
|
|
if b0 == 12:
|
|
op = (b0, byteord(data[index]))
|
|
index = index+1
|
|
else:
|
|
op = b0
|
|
try:
|
|
operator = self.operators[op]
|
|
except KeyError:
|
|
return None, index
|
|
value = self.handle_operator(operator)
|
|
return value, index
|
|
|
|
def read_byte(self, b0, data, index):
|
|
return b0 - 139, index
|
|
|
|
def read_smallInt1(self, b0, data, index):
|
|
b1 = byteord(data[index])
|
|
return (b0-247)*256 + b1 + 108, index+1
|
|
|
|
def read_smallInt2(self, b0, data, index):
|
|
b1 = byteord(data[index])
|
|
return -(b0-251)*256 - b1 - 108, index+1
|
|
|
|
def read_shortInt(self, b0, data, index):
|
|
value, = struct.unpack(">h", data[index:index+2])
|
|
return value, index+2
|
|
|
|
def read_longInt(self, b0, data, index):
|
|
value, = struct.unpack(">l", data[index:index+4])
|
|
return value, index+4
|
|
|
|
def read_fixed1616(self, b0, data, index):
|
|
value, = struct.unpack(">l", data[index:index+4])
|
|
return fixedToFloat(value, precisionBits=16), index+4
|
|
|
|
def read_reserved(self, b0, data, index):
|
|
assert NotImplementedError
|
|
return NotImplemented, index
|
|
|
|
def read_realNumber(self, b0, data, index):
|
|
number = ''
|
|
while True:
|
|
b = byteord(data[index])
|
|
index = index + 1
|
|
nibble0 = (b & 0xf0) >> 4
|
|
nibble1 = b & 0x0f
|
|
if nibble0 == 0xf:
|
|
break
|
|
number = number + realNibbles[nibble0]
|
|
if nibble1 == 0xf:
|
|
break
|
|
number = number + realNibbles[nibble1]
|
|
return float(number), index
|
|
|
|
|
|
t1OperandEncoding = [None] * 256
|
|
t1OperandEncoding[0:32] = (32) * [read_operator]
|
|
t1OperandEncoding[32:247] = (247 - 32) * [read_byte]
|
|
t1OperandEncoding[247:251] = (251 - 247) * [read_smallInt1]
|
|
t1OperandEncoding[251:255] = (255 - 251) * [read_smallInt2]
|
|
t1OperandEncoding[255] = read_longInt
|
|
assert len(t1OperandEncoding) == 256
|
|
|
|
t2OperandEncoding = t1OperandEncoding[:]
|
|
t2OperandEncoding[28] = read_shortInt
|
|
t2OperandEncoding[255] = read_fixed1616
|
|
|
|
cffDictOperandEncoding = t2OperandEncoding[:]
|
|
cffDictOperandEncoding[29] = read_longInt
|
|
cffDictOperandEncoding[30] = read_realNumber
|
|
cffDictOperandEncoding[255] = read_reserved
|
|
|
|
|
|
realNibbles = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
|
'.', 'E', 'E-', None, '-']
|
|
realNibblesDict = {v:i for i,v in enumerate(realNibbles)}
|
|
|
|
maxOpStack = 193
|
|
|
|
|
|
def buildOperatorDict(operatorList):
|
|
oper = {}
|
|
opc = {}
|
|
for item in operatorList:
|
|
if len(item) == 2:
|
|
oper[item[0]] = item[1]
|
|
else:
|
|
oper[item[0]] = item[1:]
|
|
if isinstance(item[0], tuple):
|
|
opc[item[1]] = item[0]
|
|
else:
|
|
opc[item[1]] = (item[0],)
|
|
return oper, opc
|
|
|
|
|
|
t2Operators = [
|
|
# opcode name
|
|
(1, 'hstem'),
|
|
(3, 'vstem'),
|
|
(4, 'vmoveto'),
|
|
(5, 'rlineto'),
|
|
(6, 'hlineto'),
|
|
(7, 'vlineto'),
|
|
(8, 'rrcurveto'),
|
|
(10, 'callsubr'),
|
|
(11, 'return'),
|
|
(14, 'endchar'),
|
|
(15, 'vsindex'),
|
|
(16, 'blend'),
|
|
(18, 'hstemhm'),
|
|
(19, 'hintmask'),
|
|
(20, 'cntrmask'),
|
|
(21, 'rmoveto'),
|
|
(22, 'hmoveto'),
|
|
(23, 'vstemhm'),
|
|
(24, 'rcurveline'),
|
|
(25, 'rlinecurve'),
|
|
(26, 'vvcurveto'),
|
|
(27, 'hhcurveto'),
|
|
# (28, 'shortint'), # not really an operator
|
|
(29, 'callgsubr'),
|
|
(30, 'vhcurveto'),
|
|
(31, 'hvcurveto'),
|
|
((12, 0), 'ignore'), # dotsection. Yes, there a few very early OTF/CFF
|
|
# fonts with this deprecated operator. Just ignore it.
|
|
((12, 3), 'and'),
|
|
((12, 4), 'or'),
|
|
((12, 5), 'not'),
|
|
((12, 8), 'store'),
|
|
((12, 9), 'abs'),
|
|
((12, 10), 'add'),
|
|
((12, 11), 'sub'),
|
|
((12, 12), 'div'),
|
|
((12, 13), 'load'),
|
|
((12, 14), 'neg'),
|
|
((12, 15), 'eq'),
|
|
((12, 18), 'drop'),
|
|
((12, 20), 'put'),
|
|
((12, 21), 'get'),
|
|
((12, 22), 'ifelse'),
|
|
((12, 23), 'random'),
|
|
((12, 24), 'mul'),
|
|
((12, 26), 'sqrt'),
|
|
((12, 27), 'dup'),
|
|
((12, 28), 'exch'),
|
|
((12, 29), 'index'),
|
|
((12, 30), 'roll'),
|
|
((12, 34), 'hflex'),
|
|
((12, 35), 'flex'),
|
|
((12, 36), 'hflex1'),
|
|
((12, 37), 'flex1'),
|
|
]
|
|
|
|
def getIntEncoder(format):
|
|
if format == "cff":
|
|
fourByteOp = bytechr(29)
|
|
elif format == "t1":
|
|
fourByteOp = bytechr(255)
|
|
else:
|
|
assert format == "t2"
|
|
fourByteOp = None
|
|
|
|
def encodeInt(value, fourByteOp=fourByteOp, bytechr=bytechr,
|
|
pack=struct.pack, unpack=struct.unpack):
|
|
if -107 <= value <= 107:
|
|
code = bytechr(value + 139)
|
|
elif 108 <= value <= 1131:
|
|
value = value - 108
|
|
code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF)
|
|
elif -1131 <= value <= -108:
|
|
value = -value - 108
|
|
code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF)
|
|
elif fourByteOp is None:
|
|
# T2 only supports 2 byte ints
|
|
if -32768 <= value <= 32767:
|
|
code = bytechr(28) + pack(">h", value)
|
|
else:
|
|
# Backwards compatible hack: due to a previous bug in FontTools,
|
|
# 16.16 fixed numbers were written out as 4-byte ints. When
|
|
# these numbers were small, they were wrongly written back as
|
|
# small ints instead of 4-byte ints, breaking round-tripping.
|
|
# This here workaround doesn't do it any better, since we can't
|
|
# distinguish anymore between small ints that were supposed to
|
|
# be small fixed numbers and small ints that were just small
|
|
# ints. Hence the warning.
|
|
import sys
|
|
sys.stderr.write("Warning: 4-byte T2 number got passed to the "
|
|
"IntType handler. This should happen only when reading in "
|
|
"old XML files.\n")
|
|
code = bytechr(255) + pack(">l", value)
|
|
else:
|
|
code = fourByteOp + pack(">l", value)
|
|
return code
|
|
|
|
return encodeInt
|
|
|
|
|
|
encodeIntCFF = getIntEncoder("cff")
|
|
encodeIntT1 = getIntEncoder("t1")
|
|
encodeIntT2 = getIntEncoder("t2")
|
|
|
|
def encodeFixed(f, pack=struct.pack):
|
|
# For T2 only
|
|
return b"\xff" + pack(">l", int(round(f * 65536)))
|
|
|
|
def encodeFloat(f):
|
|
# For CFF only, used in cffLib
|
|
s = str(f).upper()
|
|
if s[:2] == "0.":
|
|
s = s[1:]
|
|
elif s[:3] == "-0.":
|
|
s = "-" + s[2:]
|
|
nibbles = []
|
|
while s:
|
|
c = s[0]
|
|
s = s[1:]
|
|
if c == "E" and s[:1] == "-":
|
|
s = s[1:]
|
|
c = "E-"
|
|
nibbles.append(realNibblesDict[c])
|
|
nibbles.append(0xf)
|
|
if len(nibbles) % 2:
|
|
nibbles.append(0xf)
|
|
d = bytechr(30)
|
|
for i in range(0, len(nibbles), 2):
|
|
d = d + bytechr(nibbles[i] << 4 | nibbles[i+1])
|
|
return d
|
|
|
|
|
|
class CharStringCompileError(Exception): pass
|
|
|
|
|
|
class SimpleT2Decompiler(object):
|
|
|
|
def __init__(self, localSubrs, globalSubrs, private=None):
|
|
self.localSubrs = localSubrs
|
|
self.localBias = calcSubrBias(localSubrs)
|
|
self.globalSubrs = globalSubrs
|
|
self.globalBias = calcSubrBias(globalSubrs)
|
|
self.private = private
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.callingStack = []
|
|
self.operandStack = []
|
|
self.hintCount = 0
|
|
self.hintMaskBytes = 0
|
|
self.numRegions = 0
|
|
|
|
def check_program(self, program):
|
|
if not hasattr(self, 'private') or self.private is None:
|
|
# Type 1 charstrings don't have self.private.
|
|
# Type2 CFF charstrings may have self.private == None.
|
|
# In both cases, they are not CFF2 charstrings
|
|
isCFF2 = False
|
|
else:
|
|
isCFF2 = self.private._isCFF2
|
|
if isCFF2:
|
|
if program:
|
|
assert program[-1] not in ("seac",), "illegal CharString Terminator"
|
|
else:
|
|
assert program, "illegal CharString: decompiled to empty program"
|
|
assert program[-1] in ("endchar", "return", "callsubr", "callgsubr",
|
|
"seac"), "illegal CharString"
|
|
|
|
def execute(self, charString):
|
|
self.callingStack.append(charString)
|
|
needsDecompilation = charString.needsDecompilation()
|
|
if needsDecompilation:
|
|
program = []
|
|
pushToProgram = program.append
|
|
else:
|
|
pushToProgram = lambda x: None
|
|
pushToStack = self.operandStack.append
|
|
index = 0
|
|
while True:
|
|
token, isOperator, index = charString.getToken(index)
|
|
if token is None:
|
|
break # we're done!
|
|
pushToProgram(token)
|
|
if isOperator:
|
|
handlerName = "op_" + token
|
|
handler = getattr(self, handlerName, None)
|
|
if handler is not None:
|
|
rv = handler(index)
|
|
if rv:
|
|
hintMaskBytes, index = rv
|
|
pushToProgram(hintMaskBytes)
|
|
else:
|
|
self.popall()
|
|
else:
|
|
pushToStack(token)
|
|
if needsDecompilation:
|
|
self.check_program(program)
|
|
charString.setProgram(program)
|
|
del self.callingStack[-1]
|
|
|
|
def pop(self):
|
|
value = self.operandStack[-1]
|
|
del self.operandStack[-1]
|
|
return value
|
|
|
|
def popall(self):
|
|
stack = self.operandStack[:]
|
|
self.operandStack[:] = []
|
|
return stack
|
|
|
|
def push(self, value):
|
|
self.operandStack.append(value)
|
|
|
|
def op_return(self, index):
|
|
if self.operandStack:
|
|
pass
|
|
|
|
def op_endchar(self, index):
|
|
pass
|
|
|
|
def op_ignore(self, index):
|
|
pass
|
|
|
|
def op_callsubr(self, index):
|
|
subrIndex = self.pop()
|
|
subr = self.localSubrs[subrIndex+self.localBias]
|
|
self.execute(subr)
|
|
|
|
def op_callgsubr(self, index):
|
|
subrIndex = self.pop()
|
|
subr = self.globalSubrs[subrIndex+self.globalBias]
|
|
self.execute(subr)
|
|
|
|
def op_hstem(self, index):
|
|
self.countHints()
|
|
def op_vstem(self, index):
|
|
self.countHints()
|
|
def op_hstemhm(self, index):
|
|
self.countHints()
|
|
def op_vstemhm(self, index):
|
|
self.countHints()
|
|
|
|
def op_hintmask(self, index):
|
|
if not self.hintMaskBytes:
|
|
self.countHints()
|
|
self.hintMaskBytes = (self.hintCount + 7) // 8
|
|
hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes)
|
|
return hintMaskBytes, index
|
|
|
|
op_cntrmask = op_hintmask
|
|
|
|
def countHints(self):
|
|
args = self.popall()
|
|
self.hintCount = self.hintCount + len(args) // 2
|
|
|
|
# misc
|
|
def op_and(self, index):
|
|
raise NotImplementedError
|
|
def op_or(self, index):
|
|
raise NotImplementedError
|
|
def op_not(self, index):
|
|
raise NotImplementedError
|
|
def op_store(self, index):
|
|
raise NotImplementedError
|
|
def op_abs(self, index):
|
|
raise NotImplementedError
|
|
def op_add(self, index):
|
|
raise NotImplementedError
|
|
def op_sub(self, index):
|
|
raise NotImplementedError
|
|
def op_div(self, index):
|
|
raise NotImplementedError
|
|
def op_load(self, index):
|
|
raise NotImplementedError
|
|
def op_neg(self, index):
|
|
raise NotImplementedError
|
|
def op_eq(self, index):
|
|
raise NotImplementedError
|
|
def op_drop(self, index):
|
|
raise NotImplementedError
|
|
def op_put(self, index):
|
|
raise NotImplementedError
|
|
def op_get(self, index):
|
|
raise NotImplementedError
|
|
def op_ifelse(self, index):
|
|
raise NotImplementedError
|
|
def op_random(self, index):
|
|
raise NotImplementedError
|
|
def op_mul(self, index):
|
|
raise NotImplementedError
|
|
def op_sqrt(self, index):
|
|
raise NotImplementedError
|
|
def op_dup(self, index):
|
|
raise NotImplementedError
|
|
def op_exch(self, index):
|
|
raise NotImplementedError
|
|
def op_index(self, index):
|
|
raise NotImplementedError
|
|
def op_roll(self, index):
|
|
raise NotImplementedError
|
|
|
|
# TODO(behdad): move to T2OutlineExtractor and add a 'setVariation'
|
|
# method that takes VarStoreData and a location
|
|
def op_blend(self, index):
|
|
if self.numRegions == 0:
|
|
self.numRegions = self.private.getNumRegions()
|
|
numBlends = self.pop()
|
|
numOps = numBlends * (self.numRegions + 1)
|
|
blendArgs = self.operandStack[-numOps:]
|
|
del self.operandStack[:-(numOps-numBlends)] # Leave the default operands on the stack.
|
|
|
|
def op_vsindex(self, index):
|
|
vi = self.pop()
|
|
self.numRegions = self.private.getNumRegions(vi)
|
|
|
|
|
|
t1Operators = [
|
|
# opcode name
|
|
(1, 'hstem'),
|
|
(3, 'vstem'),
|
|
(4, 'vmoveto'),
|
|
(5, 'rlineto'),
|
|
(6, 'hlineto'),
|
|
(7, 'vlineto'),
|
|
(8, 'rrcurveto'),
|
|
(9, 'closepath'),
|
|
(10, 'callsubr'),
|
|
(11, 'return'),
|
|
(13, 'hsbw'),
|
|
(14, 'endchar'),
|
|
(21, 'rmoveto'),
|
|
(22, 'hmoveto'),
|
|
(30, 'vhcurveto'),
|
|
(31, 'hvcurveto'),
|
|
((12, 0), 'dotsection'),
|
|
((12, 1), 'vstem3'),
|
|
((12, 2), 'hstem3'),
|
|
((12, 6), 'seac'),
|
|
((12, 7), 'sbw'),
|
|
((12, 12), 'div'),
|
|
((12, 16), 'callothersubr'),
|
|
((12, 17), 'pop'),
|
|
((12, 33), 'setcurrentpoint'),
|
|
]
|
|
|
|
|
|
class T2WidthExtractor(SimpleT2Decompiler):
|
|
|
|
def __init__(self, localSubrs, globalSubrs, nominalWidthX, defaultWidthX):
|
|
SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs)
|
|
self.nominalWidthX = nominalWidthX
|
|
self.defaultWidthX = defaultWidthX
|
|
|
|
def reset(self):
|
|
SimpleT2Decompiler.reset(self)
|
|
self.gotWidth = 0
|
|
self.width = 0
|
|
|
|
def popallWidth(self, evenOdd=0):
|
|
args = self.popall()
|
|
if not self.gotWidth:
|
|
if evenOdd ^ (len(args) % 2):
|
|
self.width = self.nominalWidthX + args[0]
|
|
args = args[1:]
|
|
else:
|
|
self.width = self.defaultWidthX
|
|
self.gotWidth = 1
|
|
return args
|
|
|
|
def countHints(self):
|
|
args = self.popallWidth()
|
|
self.hintCount = self.hintCount + len(args) // 2
|
|
|
|
def op_rmoveto(self, index):
|
|
self.popallWidth()
|
|
|
|
def op_hmoveto(self, index):
|
|
self.popallWidth(1)
|
|
|
|
def op_vmoveto(self, index):
|
|
self.popallWidth(1)
|
|
|
|
def op_endchar(self, index):
|
|
self.popallWidth()
|
|
|
|
|
|
class T2OutlineExtractor(T2WidthExtractor):
|
|
|
|
def __init__(self, pen, localSubrs, globalSubrs, nominalWidthX, defaultWidthX):
|
|
T2WidthExtractor.__init__(
|
|
self, localSubrs, globalSubrs, nominalWidthX, defaultWidthX)
|
|
self.pen = pen
|
|
|
|
def reset(self):
|
|
T2WidthExtractor.reset(self)
|
|
self.currentPoint = (0, 0)
|
|
self.sawMoveTo = 0
|
|
|
|
def _nextPoint(self, point):
|
|
x, y = self.currentPoint
|
|
point = x + point[0], y + point[1]
|
|
self.currentPoint = point
|
|
return point
|
|
|
|
def rMoveTo(self, point):
|
|
self.pen.moveTo(self._nextPoint(point))
|
|
self.sawMoveTo = 1
|
|
|
|
def rLineTo(self, point):
|
|
if not self.sawMoveTo:
|
|
self.rMoveTo((0, 0))
|
|
self.pen.lineTo(self._nextPoint(point))
|
|
|
|
def rCurveTo(self, pt1, pt2, pt3):
|
|
if not self.sawMoveTo:
|
|
self.rMoveTo((0, 0))
|
|
nextPoint = self._nextPoint
|
|
self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3))
|
|
|
|
def closePath(self):
|
|
if self.sawMoveTo:
|
|
self.pen.closePath()
|
|
self.sawMoveTo = 0
|
|
|
|
def endPath(self):
|
|
# In T2 there are no open paths, so always do a closePath when
|
|
# finishing a sub path.
|
|
self.closePath()
|
|
|
|
#
|
|
# hint operators
|
|
#
|
|
#def op_hstem(self, index):
|
|
# self.countHints()
|
|
#def op_vstem(self, index):
|
|
# self.countHints()
|
|
#def op_hstemhm(self, index):
|
|
# self.countHints()
|
|
#def op_vstemhm(self, index):
|
|
# self.countHints()
|
|
#def op_hintmask(self, index):
|
|
# self.countHints()
|
|
#def op_cntrmask(self, index):
|
|
# self.countHints()
|
|
|
|
#
|
|
# path constructors, moveto
|
|
#
|
|
def op_rmoveto(self, index):
|
|
self.endPath()
|
|
self.rMoveTo(self.popallWidth())
|
|
def op_hmoveto(self, index):
|
|
self.endPath()
|
|
self.rMoveTo((self.popallWidth(1)[0], 0))
|
|
def op_vmoveto(self, index):
|
|
self.endPath()
|
|
self.rMoveTo((0, self.popallWidth(1)[0]))
|
|
def op_endchar(self, index):
|
|
self.endPath()
|
|
args = self.popallWidth()
|
|
if args:
|
|
from fontTools.encodings.StandardEncoding import StandardEncoding
|
|
# endchar can do seac accent bulding; The T2 spec says it's deprecated,
|
|
# but recent software that shall remain nameless does output it.
|
|
adx, ady, bchar, achar = args
|
|
baseGlyph = StandardEncoding[bchar]
|
|
self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
|
|
accentGlyph = StandardEncoding[achar]
|
|
self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))
|
|
|
|
#
|
|
# path constructors, lines
|
|
#
|
|
def op_rlineto(self, index):
|
|
args = self.popall()
|
|
for i in range(0, len(args), 2):
|
|
point = args[i:i+2]
|
|
self.rLineTo(point)
|
|
|
|
def op_hlineto(self, index):
|
|
self.alternatingLineto(1)
|
|
def op_vlineto(self, index):
|
|
self.alternatingLineto(0)
|
|
|
|
#
|
|
# path constructors, curves
|
|
#
|
|
def op_rrcurveto(self, index):
|
|
"""{dxa dya dxb dyb dxc dyc}+ rrcurveto"""
|
|
args = self.popall()
|
|
for i in range(0, len(args), 6):
|
|
dxa, dya, dxb, dyb, dxc, dyc, = args[i:i+6]
|
|
self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc))
|
|
|
|
def op_rcurveline(self, index):
|
|
"""{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline"""
|
|
args = self.popall()
|
|
for i in range(0, len(args)-2, 6):
|
|
dxb, dyb, dxc, dyc, dxd, dyd = args[i:i+6]
|
|
self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
|
|
self.rLineTo(args[-2:])
|
|
|
|
def op_rlinecurve(self, index):
|
|
"""{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve"""
|
|
args = self.popall()
|
|
lineArgs = args[:-6]
|
|
for i in range(0, len(lineArgs), 2):
|
|
self.rLineTo(lineArgs[i:i+2])
|
|
dxb, dyb, dxc, dyc, dxd, dyd = args[-6:]
|
|
self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
|
|
|
|
def op_vvcurveto(self, index):
|
|
"dx1? {dya dxb dyb dyc}+ vvcurveto"
|
|
args = self.popall()
|
|
if len(args) % 2:
|
|
dx1 = args[0]
|
|
args = args[1:]
|
|
else:
|
|
dx1 = 0
|
|
for i in range(0, len(args), 4):
|
|
dya, dxb, dyb, dyc = args[i:i+4]
|
|
self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc))
|
|
dx1 = 0
|
|
|
|
def op_hhcurveto(self, index):
|
|
"""dy1? {dxa dxb dyb dxc}+ hhcurveto"""
|
|
args = self.popall()
|
|
if len(args) % 2:
|
|
dy1 = args[0]
|
|
args = args[1:]
|
|
else:
|
|
dy1 = 0
|
|
for i in range(0, len(args), 4):
|
|
dxa, dxb, dyb, dxc = args[i:i+4]
|
|
self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0))
|
|
dy1 = 0
|
|
|
|
def op_vhcurveto(self, index):
|
|
"""dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30)
|
|
{dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto
|
|
"""
|
|
args = self.popall()
|
|
while args:
|
|
args = self.vcurveto(args)
|
|
if args:
|
|
args = self.hcurveto(args)
|
|
|
|
def op_hvcurveto(self, index):
|
|
"""dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
|
|
{dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
|
|
"""
|
|
args = self.popall()
|
|
while args:
|
|
args = self.hcurveto(args)
|
|
if args:
|
|
args = self.vcurveto(args)
|
|
|
|
#
|
|
# path constructors, flex
|
|
#
|
|
def op_hflex(self, index):
|
|
dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall()
|
|
dy1 = dy3 = dy4 = dy6 = 0
|
|
dy5 = -dy2
|
|
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
|
|
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
|
|
def op_flex(self, index):
|
|
dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall()
|
|
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
|
|
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
|
|
def op_hflex1(self, index):
|
|
dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall()
|
|
dy3 = dy4 = 0
|
|
dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5)
|
|
|
|
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
|
|
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
|
|
def op_flex1(self, index):
|
|
dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall()
|
|
dx = dx1 + dx2 + dx3 + dx4 + dx5
|
|
dy = dy1 + dy2 + dy3 + dy4 + dy5
|
|
if abs(dx) > abs(dy):
|
|
dx6 = d6
|
|
dy6 = -dy
|
|
else:
|
|
dx6 = -dx
|
|
dy6 = d6
|
|
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
|
|
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
|
|
|
|
#
|
|
# MultipleMaster. Well...
|
|
#
|
|
def op_blend(self, index):
|
|
self.popall()
|
|
|
|
# misc
|
|
def op_and(self, index):
|
|
raise NotImplementedError
|
|
def op_or(self, index):
|
|
raise NotImplementedError
|
|
def op_not(self, index):
|
|
raise NotImplementedError
|
|
def op_store(self, index):
|
|
raise NotImplementedError
|
|
def op_abs(self, index):
|
|
raise NotImplementedError
|
|
def op_add(self, index):
|
|
raise NotImplementedError
|
|
def op_sub(self, index):
|
|
raise NotImplementedError
|
|
def op_div(self, index):
|
|
num2 = self.pop()
|
|
num1 = self.pop()
|
|
d1 = num1//num2
|
|
d2 = num1/num2
|
|
if d1 == d2:
|
|
self.push(d1)
|
|
else:
|
|
self.push(d2)
|
|
def op_load(self, index):
|
|
raise NotImplementedError
|
|
def op_neg(self, index):
|
|
raise NotImplementedError
|
|
def op_eq(self, index):
|
|
raise NotImplementedError
|
|
def op_drop(self, index):
|
|
raise NotImplementedError
|
|
def op_put(self, index):
|
|
raise NotImplementedError
|
|
def op_get(self, index):
|
|
raise NotImplementedError
|
|
def op_ifelse(self, index):
|
|
raise NotImplementedError
|
|
def op_random(self, index):
|
|
raise NotImplementedError
|
|
def op_mul(self, index):
|
|
raise NotImplementedError
|
|
def op_sqrt(self, index):
|
|
raise NotImplementedError
|
|
def op_dup(self, index):
|
|
raise NotImplementedError
|
|
def op_exch(self, index):
|
|
raise NotImplementedError
|
|
def op_index(self, index):
|
|
raise NotImplementedError
|
|
def op_roll(self, index):
|
|
raise NotImplementedError
|
|
|
|
#
|
|
# miscellaneous helpers
|
|
#
|
|
def alternatingLineto(self, isHorizontal):
|
|
args = self.popall()
|
|
for arg in args:
|
|
if isHorizontal:
|
|
point = (arg, 0)
|
|
else:
|
|
point = (0, arg)
|
|
self.rLineTo(point)
|
|
isHorizontal = not isHorizontal
|
|
|
|
def vcurveto(self, args):
|
|
dya, dxb, dyb, dxc = args[:4]
|
|
args = args[4:]
|
|
if len(args) == 1:
|
|
dyc = args[0]
|
|
args = []
|
|
else:
|
|
dyc = 0
|
|
self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc))
|
|
return args
|
|
|
|
def hcurveto(self, args):
|
|
dxa, dxb, dyb, dyc = args[:4]
|
|
args = args[4:]
|
|
if len(args) == 1:
|
|
dxc = args[0]
|
|
args = []
|
|
else:
|
|
dxc = 0
|
|
self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc))
|
|
return args
|
|
|
|
class T1OutlineExtractor(T2OutlineExtractor):
|
|
|
|
def __init__(self, pen, subrs):
|
|
self.pen = pen
|
|
self.subrs = subrs
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.flexing = 0
|
|
self.width = 0
|
|
self.sbx = 0
|
|
T2OutlineExtractor.reset(self)
|
|
|
|
def endPath(self):
|
|
if self.sawMoveTo:
|
|
self.pen.endPath()
|
|
self.sawMoveTo = 0
|
|
|
|
def popallWidth(self, evenOdd=0):
|
|
return self.popall()
|
|
|
|
def exch(self):
|
|
stack = self.operandStack
|
|
stack[-1], stack[-2] = stack[-2], stack[-1]
|
|
|
|
#
|
|
# path constructors
|
|
#
|
|
def op_rmoveto(self, index):
|
|
if self.flexing:
|
|
return
|
|
self.endPath()
|
|
self.rMoveTo(self.popall())
|
|
def op_hmoveto(self, index):
|
|
if self.flexing:
|
|
# We must add a parameter to the stack if we are flexing
|
|
self.push(0)
|
|
return
|
|
self.endPath()
|
|
self.rMoveTo((self.popall()[0], 0))
|
|
def op_vmoveto(self, index):
|
|
if self.flexing:
|
|
# We must add a parameter to the stack if we are flexing
|
|
self.push(0)
|
|
self.exch()
|
|
return
|
|
self.endPath()
|
|
self.rMoveTo((0, self.popall()[0]))
|
|
def op_closepath(self, index):
|
|
self.closePath()
|
|
def op_setcurrentpoint(self, index):
|
|
args = self.popall()
|
|
x, y = args
|
|
self.currentPoint = x, y
|
|
|
|
def op_endchar(self, index):
|
|
self.endPath()
|
|
|
|
def op_hsbw(self, index):
|
|
sbx, wx = self.popall()
|
|
self.width = wx
|
|
self.sbx = sbx
|
|
self.currentPoint = sbx, self.currentPoint[1]
|
|
def op_sbw(self, index):
|
|
self.popall() # XXX
|
|
|
|
#
|
|
def op_callsubr(self, index):
|
|
subrIndex = self.pop()
|
|
subr = self.subrs[subrIndex]
|
|
self.execute(subr)
|
|
def op_callothersubr(self, index):
|
|
subrIndex = self.pop()
|
|
nArgs = self.pop()
|
|
#print nArgs, subrIndex, "callothersubr"
|
|
if subrIndex == 0 and nArgs == 3:
|
|
self.doFlex()
|
|
self.flexing = 0
|
|
elif subrIndex == 1 and nArgs == 0:
|
|
self.flexing = 1
|
|
# ignore...
|
|
def op_pop(self, index):
|
|
pass # ignore...
|
|
|
|
def doFlex(self):
|
|
finaly = self.pop()
|
|
finalx = self.pop()
|
|
self.pop() # flex height is unused
|
|
|
|
p3y = self.pop()
|
|
p3x = self.pop()
|
|
bcp4y = self.pop()
|
|
bcp4x = self.pop()
|
|
bcp3y = self.pop()
|
|
bcp3x = self.pop()
|
|
p2y = self.pop()
|
|
p2x = self.pop()
|
|
bcp2y = self.pop()
|
|
bcp2x = self.pop()
|
|
bcp1y = self.pop()
|
|
bcp1x = self.pop()
|
|
rpy = self.pop()
|
|
rpx = self.pop()
|
|
|
|
# call rrcurveto
|
|
self.push(bcp1x+rpx)
|
|
self.push(bcp1y+rpy)
|
|
self.push(bcp2x)
|
|
self.push(bcp2y)
|
|
self.push(p2x)
|
|
self.push(p2y)
|
|
self.op_rrcurveto(None)
|
|
|
|
# call rrcurveto
|
|
self.push(bcp3x)
|
|
self.push(bcp3y)
|
|
self.push(bcp4x)
|
|
self.push(bcp4y)
|
|
self.push(p3x)
|
|
self.push(p3y)
|
|
self.op_rrcurveto(None)
|
|
|
|
# Push back final coords so subr 0 can find them
|
|
self.push(finalx)
|
|
self.push(finaly)
|
|
|
|
def op_dotsection(self, index):
|
|
self.popall() # XXX
|
|
def op_hstem3(self, index):
|
|
self.popall() # XXX
|
|
def op_seac(self, index):
|
|
"asb adx ady bchar achar seac"
|
|
from fontTools.encodings.StandardEncoding import StandardEncoding
|
|
asb, adx, ady, bchar, achar = self.popall()
|
|
baseGlyph = StandardEncoding[bchar]
|
|
self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
|
|
accentGlyph = StandardEncoding[achar]
|
|
adx = adx + self.sbx - asb # seac weirdness
|
|
self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))
|
|
def op_vstem3(self, index):
|
|
self.popall() # XXX
|
|
|
|
class T2CharString(object):
|
|
|
|
operandEncoding = t2OperandEncoding
|
|
operators, opcodes = buildOperatorDict(t2Operators)
|
|
decompilerClass = SimpleT2Decompiler
|
|
outlineExtractor = T2OutlineExtractor
|
|
|
|
def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None):
|
|
if program is None:
|
|
program = []
|
|
self.bytecode = bytecode
|
|
self.program = program
|
|
self.private = private
|
|
self.globalSubrs = globalSubrs if globalSubrs is not None else []
|
|
|
|
def __repr__(self):
|
|
if self.bytecode is None:
|
|
return "<%s (source) at %x>" % (self.__class__.__name__, id(self))
|
|
else:
|
|
return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self))
|
|
|
|
def getIntEncoder(self):
|
|
return encodeIntT2
|
|
|
|
def getFixedEncoder(self):
|
|
return encodeFixed
|
|
|
|
def decompile(self):
|
|
if not self.needsDecompilation():
|
|
return
|
|
subrs = getattr(self.private, "Subrs", [])
|
|
decompiler = self.decompilerClass(subrs, self.globalSubrs, self.private)
|
|
decompiler.execute(self)
|
|
|
|
def draw(self, pen):
|
|
subrs = getattr(self.private, "Subrs", [])
|
|
extractor = self.outlineExtractor(pen, subrs, self.globalSubrs,
|
|
self.private.nominalWidthX, self.private.defaultWidthX)
|
|
extractor.execute(self)
|
|
self.width = extractor.width
|
|
|
|
def check_program(self, program, isCFF2=False):
|
|
if isCFF2:
|
|
if self.program:
|
|
assert self.program[-1] not in ("seac",), "illegal CFF2 CharString Termination"
|
|
else:
|
|
assert self.program, "illegal CharString: decompiled to empty program"
|
|
assert self.program[-1] in ("endchar", "return", "callsubr", "callgsubr", "seac"), "illegal CharString"
|
|
|
|
def compile(self, isCFF2=False):
|
|
if self.bytecode is not None:
|
|
return
|
|
opcodes = self.opcodes
|
|
program = self.program
|
|
self.check_program(program, isCFF2=isCFF2)
|
|
bytecode = []
|
|
encodeInt = self.getIntEncoder()
|
|
encodeFixed = self.getFixedEncoder()
|
|
i = 0
|
|
end = len(program)
|
|
while i < end:
|
|
token = program[i]
|
|
i = i + 1
|
|
tp = type(token)
|
|
if issubclass(tp, basestring):
|
|
try:
|
|
bytecode.extend(bytechr(b) for b in opcodes[token])
|
|
except KeyError:
|
|
raise CharStringCompileError("illegal operator: %s" % token)
|
|
if token in ('hintmask', 'cntrmask'):
|
|
bytecode.append(program[i]) # hint mask
|
|
i = i + 1
|
|
elif tp == int:
|
|
bytecode.append(encodeInt(token))
|
|
elif tp == float:
|
|
bytecode.append(encodeFixed(token))
|
|
else:
|
|
assert 0, "unsupported type: %s" % tp
|
|
try:
|
|
bytecode = bytesjoin(bytecode)
|
|
except TypeError:
|
|
log.error(bytecode)
|
|
raise
|
|
self.setBytecode(bytecode)
|
|
|
|
if isCFF2:
|
|
# If present, remove return and endchar operators.
|
|
if self.bytecode and (byteord(self.bytecode[-1]) in (11, 14)):
|
|
self.bytecode = self.bytecode[:-1]
|
|
|
|
def needsDecompilation(self):
|
|
return self.bytecode is not None
|
|
|
|
def setProgram(self, program):
|
|
self.program = program
|
|
self.bytecode = None
|
|
|
|
def setBytecode(self, bytecode):
|
|
self.bytecode = bytecode
|
|
self.program = None
|
|
|
|
def getToken(self, index,
|
|
len=len, byteord=byteord, basestring=basestring,
|
|
isinstance=isinstance):
|
|
if self.bytecode is not None:
|
|
if index >= len(self.bytecode):
|
|
return None, 0, 0
|
|
b0 = byteord(self.bytecode[index])
|
|
index = index + 1
|
|
handler = self.operandEncoding[b0]
|
|
token, index = handler(self, b0, self.bytecode, index)
|
|
else:
|
|
if index >= len(self.program):
|
|
return None, 0, 0
|
|
token = self.program[index]
|
|
index = index + 1
|
|
isOperator = isinstance(token, basestring)
|
|
return token, isOperator, index
|
|
|
|
def getBytes(self, index, nBytes):
|
|
if self.bytecode is not None:
|
|
newIndex = index + nBytes
|
|
bytes = self.bytecode[index:newIndex]
|
|
index = newIndex
|
|
else:
|
|
bytes = self.program[index]
|
|
index = index + 1
|
|
assert len(bytes) == nBytes
|
|
return bytes, index
|
|
|
|
def handle_operator(self, operator):
|
|
return operator
|
|
|
|
def toXML(self, xmlWriter):
|
|
from fontTools.misc.textTools import num2binary
|
|
if self.bytecode is not None:
|
|
xmlWriter.dumphex(self.bytecode)
|
|
else:
|
|
index = 0
|
|
args = []
|
|
while True:
|
|
token, isOperator, index = self.getToken(index)
|
|
if token is None:
|
|
break
|
|
if isOperator:
|
|
args = [str(arg) for arg in args]
|
|
if token in ('hintmask', 'cntrmask'):
|
|
hintMask, isOperator, index = self.getToken(index)
|
|
bits = []
|
|
for byte in hintMask:
|
|
bits.append(num2binary(byteord(byte), 8))
|
|
hintMask = strjoin(bits)
|
|
line = ' '.join(args + [token, hintMask])
|
|
else:
|
|
line = ' '.join(args + [token])
|
|
xmlWriter.write(line)
|
|
xmlWriter.newline()
|
|
args = []
|
|
else:
|
|
args.append(token)
|
|
|
|
def fromXML(self, name, attrs, content):
|
|
from fontTools.misc.textTools import binary2num, readHex
|
|
if attrs.get("raw"):
|
|
self.setBytecode(readHex(content))
|
|
return
|
|
content = strjoin(content)
|
|
content = content.split()
|
|
program = []
|
|
end = len(content)
|
|
i = 0
|
|
while i < end:
|
|
token = content[i]
|
|
i = i + 1
|
|
try:
|
|
token = int(token)
|
|
except ValueError:
|
|
try:
|
|
token = float(token)
|
|
except ValueError:
|
|
program.append(token)
|
|
if token in ('hintmask', 'cntrmask'):
|
|
mask = content[i]
|
|
maskBytes = b""
|
|
for j in range(0, len(mask), 8):
|
|
maskBytes = maskBytes + bytechr(binary2num(mask[j:j+8]))
|
|
program.append(maskBytes)
|
|
i = i + 1
|
|
else:
|
|
program.append(token)
|
|
else:
|
|
program.append(token)
|
|
self.setProgram(program)
|
|
|
|
|
|
class T1CharString(T2CharString):
|
|
|
|
operandEncoding = t1OperandEncoding
|
|
operators, opcodes = buildOperatorDict(t1Operators)
|
|
|
|
def __init__(self, bytecode=None, program=None, subrs=None):
|
|
if program is None:
|
|
program = []
|
|
self.bytecode = bytecode
|
|
self.program = program
|
|
self.subrs = subrs
|
|
|
|
def getIntEncoder(self):
|
|
return encodeIntT1
|
|
|
|
def getFixedEncoder(self):
|
|
def encodeFixed(value):
|
|
raise TypeError("Type 1 charstrings don't support floating point operands")
|
|
|
|
def decompile(self):
|
|
if self.bytecode is None:
|
|
return
|
|
program = []
|
|
index = 0
|
|
while True:
|
|
token, isOperator, index = self.getToken(index)
|
|
if token is None:
|
|
break
|
|
program.append(token)
|
|
self.setProgram(program)
|
|
|
|
def draw(self, pen):
|
|
extractor = T1OutlineExtractor(pen, self.subrs)
|
|
extractor.execute(self)
|
|
self.width = extractor.width
|
|
|
|
|
|
class DictDecompiler(object):
|
|
|
|
operandEncoding = cffDictOperandEncoding
|
|
|
|
def __init__(self, strings, parent=None):
|
|
self.stack = []
|
|
self.strings = strings
|
|
self.dict = {}
|
|
self.parent = parent
|
|
|
|
def getDict(self):
|
|
assert len(self.stack) == 0, "non-empty stack"
|
|
return self.dict
|
|
|
|
def decompile(self, data):
|
|
index = 0
|
|
lenData = len(data)
|
|
push = self.stack.append
|
|
while index < lenData:
|
|
b0 = byteord(data[index])
|
|
index = index + 1
|
|
handler = self.operandEncoding[b0]
|
|
value, index = handler(self, b0, data, index)
|
|
if value is not None:
|
|
push(value)
|
|
def pop(self):
|
|
value = self.stack[-1]
|
|
del self.stack[-1]
|
|
return value
|
|
|
|
def popall(self):
|
|
args = self.stack[:]
|
|
del self.stack[:]
|
|
return args
|
|
|
|
def handle_operator(self, operator):
|
|
operator, argType = operator
|
|
if isinstance(argType, tuple):
|
|
value = ()
|
|
for i in range(len(argType)-1, -1, -1):
|
|
arg = argType[i]
|
|
arghandler = getattr(self, "arg_" + arg)
|
|
value = (arghandler(operator),) + value
|
|
else:
|
|
arghandler = getattr(self, "arg_" + argType)
|
|
value = arghandler(operator)
|
|
if operator == "blend":
|
|
self.stack.extend(value)
|
|
else:
|
|
self.dict[operator] = value
|
|
|
|
def arg_number(self, name):
|
|
if isinstance(self.stack[0], list):
|
|
out = self.arg_blend_number(self.stack)
|
|
else:
|
|
out = self.pop()
|
|
return out
|
|
|
|
def arg_blend_number(self, name):
|
|
out = []
|
|
blendArgs = self.pop()
|
|
numMasters = len(blendArgs)
|
|
out.append(blendArgs)
|
|
out.append("blend")
|
|
dummy = self.popall()
|
|
return blendArgs
|
|
|
|
def arg_SID(self, name):
|
|
return self.strings[self.pop()]
|
|
def arg_array(self, name):
|
|
return self.popall()
|
|
def arg_blendList(self, name):
|
|
# The last item on the stack is the number of return values, aka numValues.
|
|
# before that we have [numValues: args from first master]
|
|
# then numValues blend lists, where each blend list is numMasters -1
|
|
# Total number of values is numValues + (numValues * (numMasters -1)), == numValues * numMasters.
|
|
# reformat list to be numReturnValues tuples, each tuple with nMaster values
|
|
vsindex = self.dict.get('vsindex', 0)
|
|
numMasters = self.parent.getNumRegions(vsindex) + 1 # only a PrivateDict has blended ops.
|
|
numReturnValues = self.pop()
|
|
stackIndex = -numMasters * numReturnValues
|
|
args = self.stack[stackIndex:]
|
|
del self.stack[stackIndex:]
|
|
numArgs = len(args)
|
|
value = [None]*numReturnValues
|
|
numDeltas = numMasters-1
|
|
i = 0
|
|
prevVal = 0
|
|
prevValueList = [0]*numMasters
|
|
while i < numReturnValues:
|
|
newVal = args[i] + prevVal
|
|
blendList = [newVal]*numMasters
|
|
prevVal = newVal
|
|
value[i] = blendList
|
|
j = 1
|
|
while j < numMasters:
|
|
masterOffset = numReturnValues + (i* numDeltas)
|
|
mi = masterOffset +(j-1)
|
|
delta = args[i] + args[mi]
|
|
blendList[j]= delta + prevValueList[j]
|
|
j += 1
|
|
prevValueList = blendList
|
|
i += 1
|
|
return value
|
|
|
|
def arg_delta(self, name):
|
|
valueList = self.popall()
|
|
out = []
|
|
if valueList and isinstance(valueList[0], list):
|
|
# arg_blendList() has already converted these to absolute values.
|
|
out = valueList
|
|
else:
|
|
current = 0
|
|
for v in valueList:
|
|
current = current + v
|
|
out.append(current)
|
|
return out
|
|
|
|
|
|
def calcSubrBias(subrs):
|
|
nSubrs = len(subrs)
|
|
if nSubrs < 1240:
|
|
bias = 107
|
|
elif nSubrs < 33900:
|
|
bias = 1131
|
|
else:
|
|
bias = 32768
|
|
return bias
|