it might be deprecated or ignored in some rasterizers, but I don't see why we should discard it, if it's present in the input font. This also allows to set the flag, which may turn out to be useful in some circumstances. cf. https://github.com/googlei18n/fontmake/issues/253#issuecomment-335600887
1507 lines
42 KiB
Python
1507 lines
42 KiB
Python
"""_g_l_y_f.py -- Converter classes for the 'glyf' table."""
|
|
|
|
from __future__ import print_function, division, absolute_import
|
|
from collections import namedtuple
|
|
from fontTools.misc.py23 import *
|
|
from fontTools.misc import sstruct
|
|
from fontTools import ttLib
|
|
from fontTools.misc.textTools import safeEval, pad
|
|
from fontTools.misc.arrayTools import calcBounds, calcIntBounds, pointInRect
|
|
from fontTools.misc.bezierTools import calcQuadraticBounds
|
|
from fontTools.misc.fixedTools import fixedToFloat as fi2fl, floatToFixed as fl2fi
|
|
from numbers import Number
|
|
from . import DefaultTable
|
|
from . import ttProgram
|
|
import sys
|
|
import struct
|
|
import array
|
|
import logging
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
#
|
|
# The Apple and MS rasterizers behave differently for
|
|
# scaled composite components: one does scale first and then translate
|
|
# and the other does it vice versa. MS defined some flags to indicate
|
|
# the difference, but it seems nobody actually _sets_ those flags.
|
|
#
|
|
# Funny thing: Apple seems to _only_ do their thing in the
|
|
# WE_HAVE_A_SCALE (eg. Chicago) case, and not when it's WE_HAVE_AN_X_AND_Y_SCALE
|
|
# (eg. Charcoal)...
|
|
#
|
|
SCALE_COMPONENT_OFFSET_DEFAULT = 0 # 0 == MS, 1 == Apple
|
|
|
|
|
|
class table__g_l_y_f(DefaultTable.DefaultTable):
|
|
|
|
# this attribute controls the amount of padding applied to glyph data upon compile.
|
|
# Glyph lenghts are aligned to multiples of the specified value.
|
|
# Allowed values are (0, 1, 2, 4). '0' means no padding; '1' (default) also means
|
|
# no padding, except for when padding would allow to use short loca offsets.
|
|
padding = 1
|
|
|
|
def decompile(self, data, ttFont):
|
|
loca = ttFont['loca']
|
|
last = int(loca[0])
|
|
noname = 0
|
|
self.glyphs = {}
|
|
self.glyphOrder = glyphOrder = ttFont.getGlyphOrder()
|
|
for i in range(0, len(loca)-1):
|
|
try:
|
|
glyphName = glyphOrder[i]
|
|
except IndexError:
|
|
noname = noname + 1
|
|
glyphName = 'ttxautoglyph%s' % i
|
|
next = int(loca[i+1])
|
|
glyphdata = data[last:next]
|
|
if len(glyphdata) != (next - last):
|
|
raise ttLib.TTLibError("not enough 'glyf' table data")
|
|
glyph = Glyph(glyphdata)
|
|
self.glyphs[glyphName] = glyph
|
|
last = next
|
|
if len(data) - next >= 4:
|
|
log.warning(
|
|
"too much 'glyf' table data: expected %d, received %d bytes",
|
|
next, len(data))
|
|
if noname:
|
|
log.warning('%s glyphs have no name', noname)
|
|
if ttFont.lazy is False: # Be lazy for None and True
|
|
for glyph in self.glyphs.values():
|
|
glyph.expand(self)
|
|
|
|
def compile(self, ttFont):
|
|
if not hasattr(self, "glyphOrder"):
|
|
self.glyphOrder = ttFont.getGlyphOrder()
|
|
padding = self.padding
|
|
assert padding in (0, 1, 2, 4)
|
|
locations = []
|
|
currentLocation = 0
|
|
dataList = []
|
|
recalcBBoxes = ttFont.recalcBBoxes
|
|
for glyphName in self.glyphOrder:
|
|
glyph = self.glyphs[glyphName]
|
|
glyphData = glyph.compile(self, recalcBBoxes)
|
|
if padding > 1:
|
|
glyphData = pad(glyphData, size=padding)
|
|
locations.append(currentLocation)
|
|
currentLocation = currentLocation + len(glyphData)
|
|
dataList.append(glyphData)
|
|
locations.append(currentLocation)
|
|
|
|
if padding == 1 and currentLocation < 0x20000:
|
|
# See if we can pad any odd-lengthed glyphs to allow loca
|
|
# table to use the short offsets.
|
|
indices = [i for i,glyphData in enumerate(dataList) if len(glyphData) % 2 == 1]
|
|
if indices and currentLocation + len(indices) < 0x20000:
|
|
# It fits. Do it.
|
|
for i in indices:
|
|
dataList[i] += b'\0'
|
|
currentLocation = 0
|
|
for i,glyphData in enumerate(dataList):
|
|
locations[i] = currentLocation
|
|
currentLocation += len(glyphData)
|
|
locations[len(dataList)] = currentLocation
|
|
|
|
data = bytesjoin(dataList)
|
|
if 'loca' in ttFont:
|
|
ttFont['loca'].set(locations)
|
|
if 'maxp' in ttFont:
|
|
ttFont['maxp'].numGlyphs = len(self.glyphs)
|
|
return data
|
|
|
|
def toXML(self, writer, ttFont, progress=None):
|
|
writer.newline()
|
|
glyphNames = ttFont.getGlyphNames()
|
|
writer.comment("The xMin, yMin, xMax and yMax values\nwill be recalculated by the compiler.")
|
|
writer.newline()
|
|
writer.newline()
|
|
counter = 0
|
|
progressStep = 10
|
|
numGlyphs = len(glyphNames)
|
|
for glyphName in glyphNames:
|
|
if not counter % progressStep and progress is not None:
|
|
progress.setLabel("Dumping 'glyf' table... (%s)" % glyphName)
|
|
progress.increment(progressStep / numGlyphs)
|
|
counter = counter + 1
|
|
glyph = self[glyphName]
|
|
if glyph.numberOfContours:
|
|
writer.begintag('TTGlyph', [
|
|
("name", glyphName),
|
|
("xMin", glyph.xMin),
|
|
("yMin", glyph.yMin),
|
|
("xMax", glyph.xMax),
|
|
("yMax", glyph.yMax),
|
|
])
|
|
writer.newline()
|
|
glyph.toXML(writer, ttFont)
|
|
writer.endtag('TTGlyph')
|
|
writer.newline()
|
|
else:
|
|
writer.simpletag('TTGlyph', name=glyphName)
|
|
writer.comment("contains no outline data")
|
|
writer.newline()
|
|
writer.newline()
|
|
|
|
def fromXML(self, name, attrs, content, ttFont):
|
|
if name != "TTGlyph":
|
|
return
|
|
if not hasattr(self, "glyphs"):
|
|
self.glyphs = {}
|
|
if not hasattr(self, "glyphOrder"):
|
|
self.glyphOrder = ttFont.getGlyphOrder()
|
|
glyphName = attrs["name"]
|
|
log.debug("unpacking glyph '%s'", glyphName)
|
|
glyph = Glyph()
|
|
for attr in ['xMin', 'yMin', 'xMax', 'yMax']:
|
|
setattr(glyph, attr, safeEval(attrs.get(attr, '0')))
|
|
self.glyphs[glyphName] = glyph
|
|
for element in content:
|
|
if not isinstance(element, tuple):
|
|
continue
|
|
name, attrs, content = element
|
|
glyph.fromXML(name, attrs, content, ttFont)
|
|
if not ttFont.recalcBBoxes:
|
|
glyph.compact(self, 0)
|
|
|
|
def setGlyphOrder(self, glyphOrder):
|
|
self.glyphOrder = glyphOrder
|
|
|
|
def getGlyphName(self, glyphID):
|
|
return self.glyphOrder[glyphID]
|
|
|
|
def getGlyphID(self, glyphName):
|
|
# XXX optimize with reverse dict!!!
|
|
return self.glyphOrder.index(glyphName)
|
|
|
|
def removeHinting(self):
|
|
for glyph in self.glyphs.values():
|
|
glyph.removeHinting()
|
|
|
|
def keys(self):
|
|
return self.glyphs.keys()
|
|
|
|
def has_key(self, glyphName):
|
|
return glyphName in self.glyphs
|
|
|
|
__contains__ = has_key
|
|
|
|
def __getitem__(self, glyphName):
|
|
glyph = self.glyphs[glyphName]
|
|
glyph.expand(self)
|
|
return glyph
|
|
|
|
def __setitem__(self, glyphName, glyph):
|
|
self.glyphs[glyphName] = glyph
|
|
if glyphName not in self.glyphOrder:
|
|
self.glyphOrder.append(glyphName)
|
|
|
|
def __delitem__(self, glyphName):
|
|
del self.glyphs[glyphName]
|
|
self.glyphOrder.remove(glyphName)
|
|
|
|
def __len__(self):
|
|
assert len(self.glyphOrder) == len(self.glyphs)
|
|
return len(self.glyphs)
|
|
|
|
|
|
glyphHeaderFormat = """
|
|
> # big endian
|
|
numberOfContours: h
|
|
xMin: h
|
|
yMin: h
|
|
xMax: h
|
|
yMax: h
|
|
"""
|
|
|
|
# flags
|
|
flagOnCurve = 0x01
|
|
flagXShort = 0x02
|
|
flagYShort = 0x04
|
|
flagRepeat = 0x08
|
|
flagXsame = 0x10
|
|
flagYsame = 0x20
|
|
flagReserved1 = 0x40
|
|
flagReserved2 = 0x80
|
|
|
|
_flagSignBytes = {
|
|
0: 2,
|
|
flagXsame: 0,
|
|
flagXShort|flagXsame: +1,
|
|
flagXShort: -1,
|
|
flagYsame: 0,
|
|
flagYShort|flagYsame: +1,
|
|
flagYShort: -1,
|
|
}
|
|
|
|
def flagBest(x, y, onCurve):
|
|
"""For a given x,y delta pair, returns the flag that packs this pair
|
|
most efficiently, as well as the number of byte cost of such flag."""
|
|
|
|
flag = flagOnCurve if onCurve else 0
|
|
cost = 0
|
|
# do x
|
|
if x == 0:
|
|
flag = flag | flagXsame
|
|
elif -255 <= x <= 255:
|
|
flag = flag | flagXShort
|
|
if x > 0:
|
|
flag = flag | flagXsame
|
|
cost += 1
|
|
else:
|
|
cost += 2
|
|
# do y
|
|
if y == 0:
|
|
flag = flag | flagYsame
|
|
elif -255 <= y <= 255:
|
|
flag = flag | flagYShort
|
|
if y > 0:
|
|
flag = flag | flagYsame
|
|
cost += 1
|
|
else:
|
|
cost += 2
|
|
return flag, cost
|
|
|
|
def flagFits(newFlag, oldFlag, mask):
|
|
newBytes = _flagSignBytes[newFlag & mask]
|
|
oldBytes = _flagSignBytes[oldFlag & mask]
|
|
return newBytes == oldBytes or abs(newBytes) > abs(oldBytes)
|
|
|
|
def flagSupports(newFlag, oldFlag):
|
|
return ((oldFlag & flagOnCurve) == (newFlag & flagOnCurve) and
|
|
flagFits(newFlag, oldFlag, flagXsame|flagXShort) and
|
|
flagFits(newFlag, oldFlag, flagYsame|flagYShort))
|
|
|
|
def flagEncodeCoord(flag, mask, coord, coordBytes):
|
|
byteCount = _flagSignBytes[flag & mask]
|
|
if byteCount == 1:
|
|
coordBytes.append(coord)
|
|
elif byteCount == -1:
|
|
coordBytes.append(-coord)
|
|
elif byteCount == 2:
|
|
coordBytes.append((coord >> 8) & 0xFF)
|
|
coordBytes.append(coord & 0xFF)
|
|
|
|
def flagEncodeCoords(flag, x, y, xBytes, yBytes):
|
|
flagEncodeCoord(flag, flagXsame|flagXShort, x, xBytes)
|
|
flagEncodeCoord(flag, flagYsame|flagYShort, y, yBytes)
|
|
|
|
|
|
ARG_1_AND_2_ARE_WORDS = 0x0001 # if set args are words otherwise they are bytes
|
|
ARGS_ARE_XY_VALUES = 0x0002 # if set args are xy values, otherwise they are points
|
|
ROUND_XY_TO_GRID = 0x0004 # for the xy values if above is true
|
|
WE_HAVE_A_SCALE = 0x0008 # Sx = Sy, otherwise scale == 1.0
|
|
NON_OVERLAPPING = 0x0010 # set to same value for all components (obsolete!)
|
|
MORE_COMPONENTS = 0x0020 # indicates at least one more glyph after this one
|
|
WE_HAVE_AN_X_AND_Y_SCALE = 0x0040 # Sx, Sy
|
|
WE_HAVE_A_TWO_BY_TWO = 0x0080 # t00, t01, t10, t11
|
|
WE_HAVE_INSTRUCTIONS = 0x0100 # instructions follow
|
|
USE_MY_METRICS = 0x0200 # apply these metrics to parent glyph
|
|
OVERLAP_COMPOUND = 0x0400 # used by Apple in GX fonts
|
|
SCALED_COMPONENT_OFFSET = 0x0800 # composite designed to have the component offset scaled (designed for Apple)
|
|
UNSCALED_COMPONENT_OFFSET = 0x1000 # composite designed not to have the component offset scaled (designed for MS)
|
|
|
|
|
|
CompositeMaxpValues = namedtuple('CompositeMaxpValues', ['nPoints', 'nContours', 'maxComponentDepth'])
|
|
|
|
|
|
class Glyph(object):
|
|
|
|
def __init__(self, data=""):
|
|
if not data:
|
|
# empty char
|
|
self.numberOfContours = 0
|
|
return
|
|
self.data = data
|
|
|
|
def compact(self, glyfTable, recalcBBoxes=True):
|
|
data = self.compile(glyfTable, recalcBBoxes)
|
|
self.__dict__.clear()
|
|
self.data = data
|
|
|
|
def expand(self, glyfTable):
|
|
if not hasattr(self, "data"):
|
|
# already unpacked
|
|
return
|
|
if not self.data:
|
|
# empty char
|
|
del self.data
|
|
self.numberOfContours = 0
|
|
return
|
|
dummy, data = sstruct.unpack2(glyphHeaderFormat, self.data, self)
|
|
del self.data
|
|
# Some fonts (eg. Neirizi.ttf) have a 0 for numberOfContours in
|
|
# some glyphs; decompileCoordinates assumes that there's at least
|
|
# one, so short-circuit here.
|
|
if self.numberOfContours == 0:
|
|
return
|
|
if self.isComposite():
|
|
self.decompileComponents(data, glyfTable)
|
|
else:
|
|
self.decompileCoordinates(data)
|
|
|
|
def compile(self, glyfTable, recalcBBoxes=True):
|
|
if hasattr(self, "data"):
|
|
if recalcBBoxes:
|
|
# must unpack glyph in order to recalculate bounding box
|
|
self.expand(glyfTable)
|
|
else:
|
|
return self.data
|
|
if self.numberOfContours == 0:
|
|
return ""
|
|
if recalcBBoxes:
|
|
self.recalcBounds(glyfTable)
|
|
data = sstruct.pack(glyphHeaderFormat, self)
|
|
if self.isComposite():
|
|
data = data + self.compileComponents(glyfTable)
|
|
else:
|
|
data = data + self.compileCoordinates()
|
|
return data
|
|
|
|
def toXML(self, writer, ttFont):
|
|
if self.isComposite():
|
|
for compo in self.components:
|
|
compo.toXML(writer, ttFont)
|
|
haveInstructions = hasattr(self, "program")
|
|
else:
|
|
last = 0
|
|
for i in range(self.numberOfContours):
|
|
writer.begintag("contour")
|
|
writer.newline()
|
|
for j in range(last, self.endPtsOfContours[i] + 1):
|
|
writer.simpletag("pt", [
|
|
("x", self.coordinates[j][0]),
|
|
("y", self.coordinates[j][1]),
|
|
("on", self.flags[j] & flagOnCurve)])
|
|
writer.newline()
|
|
last = self.endPtsOfContours[i] + 1
|
|
writer.endtag("contour")
|
|
writer.newline()
|
|
haveInstructions = self.numberOfContours > 0
|
|
if haveInstructions:
|
|
if self.program:
|
|
writer.begintag("instructions")
|
|
writer.newline()
|
|
self.program.toXML(writer, ttFont)
|
|
writer.endtag("instructions")
|
|
else:
|
|
writer.simpletag("instructions")
|
|
writer.newline()
|
|
|
|
def fromXML(self, name, attrs, content, ttFont):
|
|
if name == "contour":
|
|
if self.numberOfContours < 0:
|
|
raise ttLib.TTLibError("can't mix composites and contours in glyph")
|
|
self.numberOfContours = self.numberOfContours + 1
|
|
coordinates = GlyphCoordinates()
|
|
flags = []
|
|
for element in content:
|
|
if not isinstance(element, tuple):
|
|
continue
|
|
name, attrs, content = element
|
|
if name != "pt":
|
|
continue # ignore anything but "pt"
|
|
coordinates.append((safeEval(attrs["x"]), safeEval(attrs["y"])))
|
|
flags.append(not not safeEval(attrs["on"]))
|
|
flags = array.array("B", flags)
|
|
if not hasattr(self, "coordinates"):
|
|
self.coordinates = coordinates
|
|
self.flags = flags
|
|
self.endPtsOfContours = [len(coordinates)-1]
|
|
else:
|
|
self.coordinates.extend (coordinates)
|
|
self.flags.extend(flags)
|
|
self.endPtsOfContours.append(len(self.coordinates)-1)
|
|
elif name == "component":
|
|
if self.numberOfContours > 0:
|
|
raise ttLib.TTLibError("can't mix composites and contours in glyph")
|
|
self.numberOfContours = -1
|
|
if not hasattr(self, "components"):
|
|
self.components = []
|
|
component = GlyphComponent()
|
|
self.components.append(component)
|
|
component.fromXML(name, attrs, content, ttFont)
|
|
elif name == "instructions":
|
|
self.program = ttProgram.Program()
|
|
for element in content:
|
|
if not isinstance(element, tuple):
|
|
continue
|
|
name, attrs, content = element
|
|
self.program.fromXML(name, attrs, content, ttFont)
|
|
|
|
def getCompositeMaxpValues(self, glyfTable, maxComponentDepth=1):
|
|
assert self.isComposite()
|
|
nContours = 0
|
|
nPoints = 0
|
|
for compo in self.components:
|
|
baseGlyph = glyfTable[compo.glyphName]
|
|
if baseGlyph.numberOfContours == 0:
|
|
continue
|
|
elif baseGlyph.numberOfContours > 0:
|
|
nP, nC = baseGlyph.getMaxpValues()
|
|
else:
|
|
nP, nC, maxComponentDepth = baseGlyph.getCompositeMaxpValues(
|
|
glyfTable, maxComponentDepth + 1)
|
|
nPoints = nPoints + nP
|
|
nContours = nContours + nC
|
|
return CompositeMaxpValues(nPoints, nContours, maxComponentDepth)
|
|
|
|
def getMaxpValues(self):
|
|
assert self.numberOfContours > 0
|
|
return len(self.coordinates), len(self.endPtsOfContours)
|
|
|
|
def decompileComponents(self, data, glyfTable):
|
|
self.components = []
|
|
more = 1
|
|
haveInstructions = 0
|
|
while more:
|
|
component = GlyphComponent()
|
|
more, haveInstr, data = component.decompile(data, glyfTable)
|
|
haveInstructions = haveInstructions | haveInstr
|
|
self.components.append(component)
|
|
if haveInstructions:
|
|
numInstructions, = struct.unpack(">h", data[:2])
|
|
data = data[2:]
|
|
self.program = ttProgram.Program()
|
|
self.program.fromBytecode(data[:numInstructions])
|
|
data = data[numInstructions:]
|
|
if len(data) >= 4:
|
|
log.warning(
|
|
"too much glyph data at the end of composite glyph: %d excess bytes",
|
|
len(data))
|
|
|
|
def decompileCoordinates(self, data):
|
|
endPtsOfContours = array.array("h")
|
|
endPtsOfContours.fromstring(data[:2*self.numberOfContours])
|
|
if sys.byteorder != "big":
|
|
endPtsOfContours.byteswap()
|
|
self.endPtsOfContours = endPtsOfContours.tolist()
|
|
|
|
data = data[2*self.numberOfContours:]
|
|
|
|
instructionLength, = struct.unpack(">h", data[:2])
|
|
data = data[2:]
|
|
self.program = ttProgram.Program()
|
|
self.program.fromBytecode(data[:instructionLength])
|
|
data = data[instructionLength:]
|
|
nCoordinates = self.endPtsOfContours[-1] + 1
|
|
flags, xCoordinates, yCoordinates = \
|
|
self.decompileCoordinatesRaw(nCoordinates, data)
|
|
|
|
# fill in repetitions and apply signs
|
|
self.coordinates = coordinates = GlyphCoordinates.zeros(nCoordinates)
|
|
xIndex = 0
|
|
yIndex = 0
|
|
for i in range(nCoordinates):
|
|
flag = flags[i]
|
|
# x coordinate
|
|
if flag & flagXShort:
|
|
if flag & flagXsame:
|
|
x = xCoordinates[xIndex]
|
|
else:
|
|
x = -xCoordinates[xIndex]
|
|
xIndex = xIndex + 1
|
|
elif flag & flagXsame:
|
|
x = 0
|
|
else:
|
|
x = xCoordinates[xIndex]
|
|
xIndex = xIndex + 1
|
|
# y coordinate
|
|
if flag & flagYShort:
|
|
if flag & flagYsame:
|
|
y = yCoordinates[yIndex]
|
|
else:
|
|
y = -yCoordinates[yIndex]
|
|
yIndex = yIndex + 1
|
|
elif flag & flagYsame:
|
|
y = 0
|
|
else:
|
|
y = yCoordinates[yIndex]
|
|
yIndex = yIndex + 1
|
|
coordinates[i] = (x, y)
|
|
assert xIndex == len(xCoordinates)
|
|
assert yIndex == len(yCoordinates)
|
|
coordinates.relativeToAbsolute()
|
|
# discard all flags but for "flagOnCurve"
|
|
self.flags = array.array("B", (f & flagOnCurve for f in flags))
|
|
|
|
def decompileCoordinatesRaw(self, nCoordinates, data):
|
|
# unpack flags and prepare unpacking of coordinates
|
|
flags = array.array("B", [0] * nCoordinates)
|
|
# Warning: deep Python trickery going on. We use the struct module to unpack
|
|
# the coordinates. We build a format string based on the flags, so we can
|
|
# unpack the coordinates in one struct.unpack() call.
|
|
xFormat = ">" # big endian
|
|
yFormat = ">" # big endian
|
|
i = j = 0
|
|
while True:
|
|
flag = byteord(data[i])
|
|
i = i + 1
|
|
repeat = 1
|
|
if flag & flagRepeat:
|
|
repeat = byteord(data[i]) + 1
|
|
i = i + 1
|
|
for k in range(repeat):
|
|
if flag & flagXShort:
|
|
xFormat = xFormat + 'B'
|
|
elif not (flag & flagXsame):
|
|
xFormat = xFormat + 'h'
|
|
if flag & flagYShort:
|
|
yFormat = yFormat + 'B'
|
|
elif not (flag & flagYsame):
|
|
yFormat = yFormat + 'h'
|
|
flags[j] = flag
|
|
j = j + 1
|
|
if j >= nCoordinates:
|
|
break
|
|
assert j == nCoordinates, "bad glyph flags"
|
|
data = data[i:]
|
|
# unpack raw coordinates, krrrrrr-tching!
|
|
xDataLen = struct.calcsize(xFormat)
|
|
yDataLen = struct.calcsize(yFormat)
|
|
if len(data) - (xDataLen + yDataLen) >= 4:
|
|
log.warning(
|
|
"too much glyph data: %d excess bytes", len(data) - (xDataLen + yDataLen))
|
|
xCoordinates = struct.unpack(xFormat, data[:xDataLen])
|
|
yCoordinates = struct.unpack(yFormat, data[xDataLen:xDataLen+yDataLen])
|
|
return flags, xCoordinates, yCoordinates
|
|
|
|
def compileComponents(self, glyfTable):
|
|
data = b""
|
|
lastcomponent = len(self.components) - 1
|
|
more = 1
|
|
haveInstructions = 0
|
|
for i in range(len(self.components)):
|
|
if i == lastcomponent:
|
|
haveInstructions = hasattr(self, "program")
|
|
more = 0
|
|
compo = self.components[i]
|
|
data = data + compo.compile(more, haveInstructions, glyfTable)
|
|
if haveInstructions:
|
|
instructions = self.program.getBytecode()
|
|
data = data + struct.pack(">h", len(instructions)) + instructions
|
|
return data
|
|
|
|
def compileCoordinates(self):
|
|
assert len(self.coordinates) == len(self.flags)
|
|
data = []
|
|
endPtsOfContours = array.array("h", self.endPtsOfContours)
|
|
if sys.byteorder != "big":
|
|
endPtsOfContours.byteswap()
|
|
data.append(endPtsOfContours.tostring())
|
|
instructions = self.program.getBytecode()
|
|
data.append(struct.pack(">h", len(instructions)))
|
|
data.append(instructions)
|
|
|
|
deltas = self.coordinates.copy()
|
|
if deltas.isFloat():
|
|
# Warn?
|
|
deltas.toInt()
|
|
deltas.absoluteToRelative()
|
|
|
|
# TODO(behdad): Add a configuration option for this?
|
|
deltas = self.compileDeltasGreedy(self.flags, deltas)
|
|
#deltas = self.compileDeltasOptimal(self.flags, deltas)
|
|
|
|
data.extend(deltas)
|
|
return bytesjoin(data)
|
|
|
|
def compileDeltasGreedy(self, flags, deltas):
|
|
# Implements greedy algorithm for packing coordinate deltas:
|
|
# uses shortest representation one coordinate at a time.
|
|
compressedflags = []
|
|
xPoints = []
|
|
yPoints = []
|
|
lastflag = None
|
|
repeat = 0
|
|
for flag,(x,y) in zip(flags, deltas):
|
|
# Oh, the horrors of TrueType
|
|
# do x
|
|
if x == 0:
|
|
flag = flag | flagXsame
|
|
elif -255 <= x <= 255:
|
|
flag = flag | flagXShort
|
|
if x > 0:
|
|
flag = flag | flagXsame
|
|
else:
|
|
x = -x
|
|
xPoints.append(bytechr(x))
|
|
else:
|
|
xPoints.append(struct.pack(">h", x))
|
|
# do y
|
|
if y == 0:
|
|
flag = flag | flagYsame
|
|
elif -255 <= y <= 255:
|
|
flag = flag | flagYShort
|
|
if y > 0:
|
|
flag = flag | flagYsame
|
|
else:
|
|
y = -y
|
|
yPoints.append(bytechr(y))
|
|
else:
|
|
yPoints.append(struct.pack(">h", y))
|
|
# handle repeating flags
|
|
if flag == lastflag and repeat != 255:
|
|
repeat = repeat + 1
|
|
if repeat == 1:
|
|
compressedflags.append(flag)
|
|
else:
|
|
compressedflags[-2] = flag | flagRepeat
|
|
compressedflags[-1] = repeat
|
|
else:
|
|
repeat = 0
|
|
compressedflags.append(flag)
|
|
lastflag = flag
|
|
compressedFlags = array.array("B", compressedflags).tostring()
|
|
compressedXs = bytesjoin(xPoints)
|
|
compressedYs = bytesjoin(yPoints)
|
|
return (compressedFlags, compressedXs, compressedYs)
|
|
|
|
def compileDeltasOptimal(self, flags, deltas):
|
|
# Implements optimal, dynaic-programming, algorithm for packing coordinate
|
|
# deltas. The savings are negligible :(.
|
|
candidates = []
|
|
bestTuple = None
|
|
bestCost = 0
|
|
repeat = 0
|
|
for flag,(x,y) in zip(flags, deltas):
|
|
# Oh, the horrors of TrueType
|
|
flag, coordBytes = flagBest(x, y, flag)
|
|
bestCost += 1 + coordBytes
|
|
newCandidates = [(bestCost, bestTuple, flag, coordBytes),
|
|
(bestCost+1, bestTuple, (flag|flagRepeat), coordBytes)]
|
|
for lastCost,lastTuple,lastFlag,coordBytes in candidates:
|
|
if lastCost + coordBytes <= bestCost + 1 and (lastFlag & flagRepeat) and (lastFlag < 0xff00) and flagSupports(lastFlag, flag):
|
|
if (lastFlag & 0xFF) == (flag|flagRepeat) and lastCost == bestCost + 1:
|
|
continue
|
|
newCandidates.append((lastCost + coordBytes, lastTuple, lastFlag+256, coordBytes))
|
|
candidates = newCandidates
|
|
bestTuple = min(candidates, key=lambda t:t[0])
|
|
bestCost = bestTuple[0]
|
|
|
|
flags = []
|
|
while bestTuple:
|
|
cost, bestTuple, flag, coordBytes = bestTuple
|
|
flags.append(flag)
|
|
flags.reverse()
|
|
|
|
compressedFlags = array.array("B")
|
|
compressedXs = array.array("B")
|
|
compressedYs = array.array("B")
|
|
coords = iter(deltas)
|
|
ff = []
|
|
for flag in flags:
|
|
repeatCount, flag = flag >> 8, flag & 0xFF
|
|
compressedFlags.append(flag)
|
|
if flag & flagRepeat:
|
|
assert(repeatCount > 0)
|
|
compressedFlags.append(repeatCount)
|
|
else:
|
|
assert(repeatCount == 0)
|
|
for i in range(1 + repeatCount):
|
|
x,y = next(coords)
|
|
flagEncodeCoords(flag, x, y, compressedXs, compressedYs)
|
|
ff.append(flag)
|
|
try:
|
|
next(coords)
|
|
raise Exception("internal error")
|
|
except StopIteration:
|
|
pass
|
|
compressedFlags = compressedFlags.tostring()
|
|
compressedXs = compressedXs.tostring()
|
|
compressedYs = compressedYs.tostring()
|
|
|
|
return (compressedFlags, compressedXs, compressedYs)
|
|
|
|
def recalcBounds(self, glyfTable):
|
|
coords, endPts, flags = self.getCoordinates(glyfTable)
|
|
if len(coords) > 0:
|
|
if 0:
|
|
# This branch calculates exact glyph outline bounds
|
|
# analytically, handling cases without on-curve
|
|
# extremas, etc. However, the glyf table header
|
|
# simply says that the bounds should be min/max x/y
|
|
# "for coordinate data", so I suppose that means no
|
|
# fancy thing here, just get extremas of all coord
|
|
# points (on and off). As such, this branch is
|
|
# disabled.
|
|
|
|
# Collect on-curve points
|
|
onCurveCoords = [coords[j] for j in range(len(coords))
|
|
if flags[j] & flagOnCurve]
|
|
# Add implicit on-curve points
|
|
start = 0
|
|
for end in endPts:
|
|
last = end
|
|
for j in range(start, end + 1):
|
|
if not ((flags[j] | flags[last]) & flagOnCurve):
|
|
x = (coords[last][0] + coords[j][0]) / 2
|
|
y = (coords[last][1] + coords[j][1]) / 2
|
|
onCurveCoords.append((x,y))
|
|
last = j
|
|
start = end + 1
|
|
# Add bounds for curves without an explicit extrema
|
|
start = 0
|
|
for end in endPts:
|
|
last = end
|
|
for j in range(start, end + 1):
|
|
if not (flags[j] & flagOnCurve):
|
|
next = j + 1 if j < end else start
|
|
bbox = calcBounds([coords[last], coords[next]])
|
|
if not pointInRect(coords[j], bbox):
|
|
# Ouch!
|
|
log.warning("Outline has curve with implicit extrema.")
|
|
# Ouch! Find analytical curve bounds.
|
|
pthis = coords[j]
|
|
plast = coords[last]
|
|
if not (flags[last] & flagOnCurve):
|
|
plast = ((pthis[0]+plast[0])/2, (pthis[1]+plast[1])/2)
|
|
pnext = coords[next]
|
|
if not (flags[next] & flagOnCurve):
|
|
pnext = ((pthis[0]+pnext[0])/2, (pthis[1]+pnext[1])/2)
|
|
bbox = calcQuadraticBounds(plast, pthis, pnext)
|
|
onCurveCoords.append((bbox[0],bbox[1]))
|
|
onCurveCoords.append((bbox[2],bbox[3]))
|
|
last = j
|
|
start = end + 1
|
|
|
|
self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(onCurveCoords)
|
|
else:
|
|
self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(coords)
|
|
else:
|
|
self.xMin, self.yMin, self.xMax, self.yMax = (0, 0, 0, 0)
|
|
|
|
def isComposite(self):
|
|
"""Can be called on compact or expanded glyph."""
|
|
if hasattr(self, "data") and self.data:
|
|
return struct.unpack(">h", self.data[:2])[0] == -1
|
|
else:
|
|
return self.numberOfContours == -1
|
|
|
|
def __getitem__(self, componentIndex):
|
|
if not self.isComposite():
|
|
raise ttLib.TTLibError("can't use glyph as sequence")
|
|
return self.components[componentIndex]
|
|
|
|
def getCoordinates(self, glyfTable):
|
|
if self.numberOfContours > 0:
|
|
return self.coordinates, self.endPtsOfContours, self.flags
|
|
elif self.isComposite():
|
|
# it's a composite
|
|
allCoords = GlyphCoordinates()
|
|
allFlags = array.array("B")
|
|
allEndPts = []
|
|
for compo in self.components:
|
|
g = glyfTable[compo.glyphName]
|
|
coordinates, endPts, flags = g.getCoordinates(glyfTable)
|
|
if hasattr(compo, "firstPt"):
|
|
# move according to two reference points
|
|
x1,y1 = allCoords[compo.firstPt]
|
|
x2,y2 = coordinates[compo.secondPt]
|
|
move = x1-x2, y1-y2
|
|
else:
|
|
move = compo.x, compo.y
|
|
|
|
coordinates = GlyphCoordinates(coordinates)
|
|
if not hasattr(compo, "transform"):
|
|
coordinates.translate(move)
|
|
else:
|
|
apple_way = compo.flags & SCALED_COMPONENT_OFFSET
|
|
ms_way = compo.flags & UNSCALED_COMPONENT_OFFSET
|
|
assert not (apple_way and ms_way)
|
|
if not (apple_way or ms_way):
|
|
scale_component_offset = SCALE_COMPONENT_OFFSET_DEFAULT # see top of this file
|
|
else:
|
|
scale_component_offset = apple_way
|
|
if scale_component_offset:
|
|
# the Apple way: first move, then scale (ie. scale the component offset)
|
|
coordinates.translate(move)
|
|
coordinates.transform(compo.transform)
|
|
else:
|
|
# the MS way: first scale, then move
|
|
coordinates.transform(compo.transform)
|
|
coordinates.translate(move)
|
|
offset = len(allCoords)
|
|
allEndPts.extend(e + offset for e in endPts)
|
|
allCoords.extend(coordinates)
|
|
allFlags.extend(flags)
|
|
return allCoords, allEndPts, allFlags
|
|
else:
|
|
return GlyphCoordinates(), [], array.array("B")
|
|
|
|
def getComponentNames(self, glyfTable):
|
|
if not hasattr(self, "data"):
|
|
if self.isComposite():
|
|
return [c.glyphName for c in self.components]
|
|
else:
|
|
return []
|
|
|
|
# Extract components without expanding glyph
|
|
|
|
if not self.data or struct.unpack(">h", self.data[:2])[0] >= 0:
|
|
return [] # Not composite
|
|
|
|
data = self.data
|
|
i = 10
|
|
components = []
|
|
more = 1
|
|
while more:
|
|
flags, glyphID = struct.unpack(">HH", data[i:i+4])
|
|
i += 4
|
|
flags = int(flags)
|
|
components.append(glyfTable.getGlyphName(int(glyphID)))
|
|
|
|
if flags & ARG_1_AND_2_ARE_WORDS: i += 4
|
|
else: i += 2
|
|
if flags & WE_HAVE_A_SCALE: i += 2
|
|
elif flags & WE_HAVE_AN_X_AND_Y_SCALE: i += 4
|
|
elif flags & WE_HAVE_A_TWO_BY_TWO: i += 8
|
|
more = flags & MORE_COMPONENTS
|
|
|
|
return components
|
|
|
|
def trim(self, remove_hinting=False):
|
|
""" Remove padding and, if requested, hinting, from a glyph.
|
|
This works on both expanded and compacted glyphs, without
|
|
expanding it."""
|
|
if not hasattr(self, "data"):
|
|
if remove_hinting:
|
|
self.program = ttProgram.Program()
|
|
self.program.fromBytecode([])
|
|
# No padding to trim.
|
|
return
|
|
if not self.data:
|
|
return
|
|
numContours = struct.unpack(">h", self.data[:2])[0]
|
|
data = array.array("B", self.data)
|
|
i = 10
|
|
if numContours >= 0:
|
|
i += 2 * numContours # endPtsOfContours
|
|
nCoordinates = ((data[i-2] << 8) | data[i-1]) + 1
|
|
instructionLen = (data[i] << 8) | data[i+1]
|
|
if remove_hinting:
|
|
# Zero instruction length
|
|
data[i] = data [i+1] = 0
|
|
i += 2
|
|
if instructionLen:
|
|
# Splice it out
|
|
data = data[:i] + data[i+instructionLen:]
|
|
instructionLen = 0
|
|
else:
|
|
i += 2 + instructionLen
|
|
|
|
coordBytes = 0
|
|
j = 0
|
|
while True:
|
|
flag = data[i]
|
|
i = i + 1
|
|
repeat = 1
|
|
if flag & flagRepeat:
|
|
repeat = data[i] + 1
|
|
i = i + 1
|
|
xBytes = yBytes = 0
|
|
if flag & flagXShort:
|
|
xBytes = 1
|
|
elif not (flag & flagXsame):
|
|
xBytes = 2
|
|
if flag & flagYShort:
|
|
yBytes = 1
|
|
elif not (flag & flagYsame):
|
|
yBytes = 2
|
|
coordBytes += (xBytes + yBytes) * repeat
|
|
j += repeat
|
|
if j >= nCoordinates:
|
|
break
|
|
assert j == nCoordinates, "bad glyph flags"
|
|
i += coordBytes
|
|
# Remove padding
|
|
data = data[:i]
|
|
else:
|
|
more = 1
|
|
we_have_instructions = False
|
|
while more:
|
|
flags =(data[i] << 8) | data[i+1]
|
|
if remove_hinting:
|
|
flags &= ~WE_HAVE_INSTRUCTIONS
|
|
if flags & WE_HAVE_INSTRUCTIONS:
|
|
we_have_instructions = True
|
|
data[i+0] = flags >> 8
|
|
data[i+1] = flags & 0xFF
|
|
i += 4
|
|
flags = int(flags)
|
|
|
|
if flags & ARG_1_AND_2_ARE_WORDS: i += 4
|
|
else: i += 2
|
|
if flags & WE_HAVE_A_SCALE: i += 2
|
|
elif flags & WE_HAVE_AN_X_AND_Y_SCALE: i += 4
|
|
elif flags & WE_HAVE_A_TWO_BY_TWO: i += 8
|
|
more = flags & MORE_COMPONENTS
|
|
if we_have_instructions:
|
|
instructionLen = (data[i] << 8) | data[i+1]
|
|
i += 2 + instructionLen
|
|
# Remove padding
|
|
data = data[:i]
|
|
|
|
self.data = data.tostring()
|
|
|
|
def removeHinting(self):
|
|
self.trim (remove_hinting=True)
|
|
|
|
def draw(self, pen, glyfTable, offset=0):
|
|
|
|
if self.isComposite():
|
|
for component in self.components:
|
|
glyphName, transform = component.getComponentInfo()
|
|
pen.addComponent(glyphName, transform)
|
|
return
|
|
|
|
coordinates, endPts, flags = self.getCoordinates(glyfTable)
|
|
if offset:
|
|
coordinates = coordinates.copy()
|
|
coordinates.translate((offset, 0))
|
|
start = 0
|
|
for end in endPts:
|
|
end = end + 1
|
|
contour = coordinates[start:end]
|
|
cFlags = flags[start:end]
|
|
start = end
|
|
if 1 not in cFlags:
|
|
# There is not a single on-curve point on the curve,
|
|
# use pen.qCurveTo's special case by specifying None
|
|
# as the on-curve point.
|
|
contour.append(None)
|
|
pen.qCurveTo(*contour)
|
|
else:
|
|
# Shuffle the points so that contour the is guaranteed
|
|
# to *end* in an on-curve point, which we'll use for
|
|
# the moveTo.
|
|
firstOnCurve = cFlags.index(1) + 1
|
|
contour = contour[firstOnCurve:] + contour[:firstOnCurve]
|
|
cFlags = cFlags[firstOnCurve:] + cFlags[:firstOnCurve]
|
|
pen.moveTo(contour[-1])
|
|
while contour:
|
|
nextOnCurve = cFlags.index(1) + 1
|
|
if nextOnCurve == 1:
|
|
pen.lineTo(contour[0])
|
|
else:
|
|
pen.qCurveTo(*contour[:nextOnCurve])
|
|
contour = contour[nextOnCurve:]
|
|
cFlags = cFlags[nextOnCurve:]
|
|
pen.closePath()
|
|
|
|
def __eq__(self, other):
|
|
if type(self) != type(other):
|
|
return NotImplemented
|
|
return self.__dict__ == other.__dict__
|
|
|
|
def __ne__(self, other):
|
|
result = self.__eq__(other)
|
|
return result if result is NotImplemented else not result
|
|
|
|
class GlyphComponent(object):
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def getComponentInfo(self):
|
|
"""Return the base glyph name and a transform."""
|
|
# XXX Ignoring self.firstPt & self.lastpt for now: I need to implement
|
|
# something equivalent in fontTools.objects.glyph (I'd rather not
|
|
# convert it to an absolute offset, since it is valuable information).
|
|
# This method will now raise "AttributeError: x" on glyphs that use
|
|
# this TT feature.
|
|
if hasattr(self, "transform"):
|
|
[[xx, xy], [yx, yy]] = self.transform
|
|
trans = (xx, xy, yx, yy, self.x, self.y)
|
|
else:
|
|
trans = (1, 0, 0, 1, self.x, self.y)
|
|
return self.glyphName, trans
|
|
|
|
def decompile(self, data, glyfTable):
|
|
flags, glyphID = struct.unpack(">HH", data[:4])
|
|
self.flags = int(flags)
|
|
glyphID = int(glyphID)
|
|
self.glyphName = glyfTable.getGlyphName(int(glyphID))
|
|
data = data[4:]
|
|
|
|
if self.flags & ARG_1_AND_2_ARE_WORDS:
|
|
if self.flags & ARGS_ARE_XY_VALUES:
|
|
self.x, self.y = struct.unpack(">hh", data[:4])
|
|
else:
|
|
x, y = struct.unpack(">HH", data[:4])
|
|
self.firstPt, self.secondPt = int(x), int(y)
|
|
data = data[4:]
|
|
else:
|
|
if self.flags & ARGS_ARE_XY_VALUES:
|
|
self.x, self.y = struct.unpack(">bb", data[:2])
|
|
else:
|
|
x, y = struct.unpack(">BB", data[:2])
|
|
self.firstPt, self.secondPt = int(x), int(y)
|
|
data = data[2:]
|
|
|
|
if self.flags & WE_HAVE_A_SCALE:
|
|
scale, = struct.unpack(">h", data[:2])
|
|
self.transform = [[fi2fl(scale,14), 0], [0, fi2fl(scale,14)]] # fixed 2.14
|
|
data = data[2:]
|
|
elif self.flags & WE_HAVE_AN_X_AND_Y_SCALE:
|
|
xscale, yscale = struct.unpack(">hh", data[:4])
|
|
self.transform = [[fi2fl(xscale,14), 0], [0, fi2fl(yscale,14)]] # fixed 2.14
|
|
data = data[4:]
|
|
elif self.flags & WE_HAVE_A_TWO_BY_TWO:
|
|
(xscale, scale01,
|
|
scale10, yscale) = struct.unpack(">hhhh", data[:8])
|
|
self.transform = [[fi2fl(xscale,14), fi2fl(scale01,14)],
|
|
[fi2fl(scale10,14), fi2fl(yscale,14)]] # fixed 2.14
|
|
data = data[8:]
|
|
more = self.flags & MORE_COMPONENTS
|
|
haveInstructions = self.flags & WE_HAVE_INSTRUCTIONS
|
|
self.flags = self.flags & (ROUND_XY_TO_GRID | USE_MY_METRICS |
|
|
SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET |
|
|
NON_OVERLAPPING | OVERLAP_COMPOUND)
|
|
return more, haveInstructions, data
|
|
|
|
def compile(self, more, haveInstructions, glyfTable):
|
|
data = b""
|
|
|
|
# reset all flags we will calculate ourselves
|
|
flags = self.flags & (ROUND_XY_TO_GRID | USE_MY_METRICS |
|
|
SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET |
|
|
NON_OVERLAPPING | OVERLAP_COMPOUND)
|
|
if more:
|
|
flags = flags | MORE_COMPONENTS
|
|
if haveInstructions:
|
|
flags = flags | WE_HAVE_INSTRUCTIONS
|
|
|
|
if hasattr(self, "firstPt"):
|
|
if (0 <= self.firstPt <= 255) and (0 <= self.secondPt <= 255):
|
|
data = data + struct.pack(">BB", self.firstPt, self.secondPt)
|
|
else:
|
|
data = data + struct.pack(">HH", self.firstPt, self.secondPt)
|
|
flags = flags | ARG_1_AND_2_ARE_WORDS
|
|
else:
|
|
x = int(round(self.x))
|
|
y = int(round(self.y))
|
|
flags = flags | ARGS_ARE_XY_VALUES
|
|
if (-128 <= x <= 127) and (-128 <= y <= 127):
|
|
data = data + struct.pack(">bb", x, y)
|
|
else:
|
|
data = data + struct.pack(">hh", x, y)
|
|
flags = flags | ARG_1_AND_2_ARE_WORDS
|
|
|
|
if hasattr(self, "transform"):
|
|
transform = [[fl2fi(x,14) for x in row] for row in self.transform]
|
|
if transform[0][1] or transform[1][0]:
|
|
flags = flags | WE_HAVE_A_TWO_BY_TWO
|
|
data = data + struct.pack(">hhhh",
|
|
transform[0][0], transform[0][1],
|
|
transform[1][0], transform[1][1])
|
|
elif transform[0][0] != transform[1][1]:
|
|
flags = flags | WE_HAVE_AN_X_AND_Y_SCALE
|
|
data = data + struct.pack(">hh",
|
|
transform[0][0], transform[1][1])
|
|
else:
|
|
flags = flags | WE_HAVE_A_SCALE
|
|
data = data + struct.pack(">h",
|
|
transform[0][0])
|
|
|
|
glyphID = glyfTable.getGlyphID(self.glyphName)
|
|
return struct.pack(">HH", flags, glyphID) + data
|
|
|
|
def toXML(self, writer, ttFont):
|
|
attrs = [("glyphName", self.glyphName)]
|
|
if not hasattr(self, "firstPt"):
|
|
attrs = attrs + [("x", self.x), ("y", self.y)]
|
|
else:
|
|
attrs = attrs + [("firstPt", self.firstPt), ("secondPt", self.secondPt)]
|
|
|
|
if hasattr(self, "transform"):
|
|
transform = self.transform
|
|
if transform[0][1] or transform[1][0]:
|
|
attrs = attrs + [
|
|
("scalex", transform[0][0]), ("scale01", transform[0][1]),
|
|
("scale10", transform[1][0]), ("scaley", transform[1][1]),
|
|
]
|
|
elif transform[0][0] != transform[1][1]:
|
|
attrs = attrs + [
|
|
("scalex", transform[0][0]), ("scaley", transform[1][1]),
|
|
]
|
|
else:
|
|
attrs = attrs + [("scale", transform[0][0])]
|
|
attrs = attrs + [("flags", hex(self.flags))]
|
|
writer.simpletag("component", attrs)
|
|
writer.newline()
|
|
|
|
def fromXML(self, name, attrs, content, ttFont):
|
|
self.glyphName = attrs["glyphName"]
|
|
if "firstPt" in attrs:
|
|
self.firstPt = safeEval(attrs["firstPt"])
|
|
self.secondPt = safeEval(attrs["secondPt"])
|
|
else:
|
|
self.x = safeEval(attrs["x"])
|
|
self.y = safeEval(attrs["y"])
|
|
if "scale01" in attrs:
|
|
scalex = safeEval(attrs["scalex"])
|
|
scale01 = safeEval(attrs["scale01"])
|
|
scale10 = safeEval(attrs["scale10"])
|
|
scaley = safeEval(attrs["scaley"])
|
|
self.transform = [[scalex, scale01], [scale10, scaley]]
|
|
elif "scalex" in attrs:
|
|
scalex = safeEval(attrs["scalex"])
|
|
scaley = safeEval(attrs["scaley"])
|
|
self.transform = [[scalex, 0], [0, scaley]]
|
|
elif "scale" in attrs:
|
|
scale = safeEval(attrs["scale"])
|
|
self.transform = [[scale, 0], [0, scale]]
|
|
self.flags = safeEval(attrs["flags"])
|
|
|
|
def __eq__(self, other):
|
|
if type(self) != type(other):
|
|
return NotImplemented
|
|
return self.__dict__ == other.__dict__
|
|
|
|
def __ne__(self, other):
|
|
result = self.__eq__(other)
|
|
return result if result is NotImplemented else not result
|
|
|
|
class GlyphCoordinates(object):
|
|
|
|
def __init__(self, iterable=[], typecode="h"):
|
|
self._a = array.array(typecode)
|
|
self.extend(iterable)
|
|
|
|
@property
|
|
def array(self):
|
|
return self._a
|
|
|
|
def isFloat(self):
|
|
return self._a.typecode == 'd'
|
|
|
|
def _ensureFloat(self):
|
|
if self.isFloat():
|
|
return
|
|
# The conversion to list() is to work around Jython bug
|
|
self._a = array.array("d", list(self._a))
|
|
|
|
def _checkFloat(self, p):
|
|
if self.isFloat():
|
|
return p
|
|
if any(isinstance(v, float) for v in p):
|
|
p = [int(v) if int(v) == v else v for v in p]
|
|
if any(isinstance(v, float) for v in p):
|
|
self._ensureFloat()
|
|
return p
|
|
|
|
@staticmethod
|
|
def zeros(count):
|
|
return GlyphCoordinates([(0,0)] * count)
|
|
|
|
def copy(self):
|
|
c = GlyphCoordinates(typecode=self._a.typecode)
|
|
c._a.extend(self._a)
|
|
return c
|
|
|
|
def __len__(self):
|
|
return len(self._a) // 2
|
|
|
|
def __getitem__(self, k):
|
|
if isinstance(k, slice):
|
|
indices = range(*k.indices(len(self)))
|
|
return [self[i] for i in indices]
|
|
return self._a[2*k],self._a[2*k+1]
|
|
|
|
def __setitem__(self, k, v):
|
|
if isinstance(k, slice):
|
|
indices = range(*k.indices(len(self)))
|
|
# XXX This only works if len(v) == len(indices)
|
|
for j,i in enumerate(indices):
|
|
self[i] = v[j]
|
|
return
|
|
v = self._checkFloat(v)
|
|
self._a[2*k],self._a[2*k+1] = v
|
|
|
|
def __delitem__(self, i):
|
|
i = (2*i) % len(self._a)
|
|
del self._a[i]
|
|
del self._a[i]
|
|
|
|
|
|
def __repr__(self):
|
|
return 'GlyphCoordinates(['+','.join(str(c) for c in self)+'])'
|
|
|
|
def append(self, p):
|
|
p = self._checkFloat(p)
|
|
self._a.extend(tuple(p))
|
|
|
|
def extend(self, iterable):
|
|
for p in iterable:
|
|
p = self._checkFloat(p)
|
|
self._a.extend(p)
|
|
|
|
def toInt(self):
|
|
if not self.isFloat():
|
|
return
|
|
a = array.array("h")
|
|
for n in self._a:
|
|
a.append(int(round(n)))
|
|
self._a = a
|
|
|
|
def relativeToAbsolute(self):
|
|
a = self._a
|
|
x,y = 0,0
|
|
for i in range(len(a) // 2):
|
|
a[2*i ] = x = a[2*i ] + x
|
|
a[2*i+1] = y = a[2*i+1] + y
|
|
|
|
def absoluteToRelative(self):
|
|
a = self._a
|
|
x,y = 0,0
|
|
for i in range(len(a) // 2):
|
|
dx = a[2*i ] - x
|
|
dy = a[2*i+1] - y
|
|
x = a[2*i ]
|
|
y = a[2*i+1]
|
|
a[2*i ] = dx
|
|
a[2*i+1] = dy
|
|
|
|
def translate(self, p):
|
|
"""
|
|
>>> GlyphCoordinates([(1,2)]).translate((.5,0))
|
|
"""
|
|
(x,y) = self._checkFloat(p)
|
|
a = self._a
|
|
for i in range(len(a) // 2):
|
|
a[2*i ] += x
|
|
a[2*i+1] += y
|
|
|
|
def scale(self, p):
|
|
"""
|
|
>>> GlyphCoordinates([(1,2)]).scale((.5,0))
|
|
"""
|
|
(x,y) = self._checkFloat(p)
|
|
a = self._a
|
|
for i in range(len(a) // 2):
|
|
a[2*i ] *= x
|
|
a[2*i+1] *= y
|
|
|
|
def transform(self, t):
|
|
"""
|
|
>>> GlyphCoordinates([(1,2)]).transform(((.5,0),(.2,.5)))
|
|
"""
|
|
a = self._a
|
|
for i in range(len(a) // 2):
|
|
x = a[2*i ]
|
|
y = a[2*i+1]
|
|
px = x * t[0][0] + y * t[1][0]
|
|
py = x * t[0][1] + y * t[1][1]
|
|
self[i] = (px, py)
|
|
|
|
def __eq__(self, other):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g2 = GlyphCoordinates([(1.0,2)])
|
|
>>> g3 = GlyphCoordinates([(1.5,2)])
|
|
>>> g == g2
|
|
True
|
|
>>> g == g3
|
|
False
|
|
>>> g2 == g3
|
|
False
|
|
"""
|
|
if type(self) != type(other):
|
|
return NotImplemented
|
|
return self._a == other._a
|
|
|
|
def __ne__(self, other):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g2 = GlyphCoordinates([(1.0,2)])
|
|
>>> g3 = GlyphCoordinates([(1.5,2)])
|
|
>>> g != g2
|
|
False
|
|
>>> g != g3
|
|
True
|
|
>>> g2 != g3
|
|
True
|
|
"""
|
|
result = self.__eq__(other)
|
|
return result if result is NotImplemented else not result
|
|
|
|
# Math operations
|
|
|
|
def __pos__(self):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g
|
|
GlyphCoordinates([(1, 2)])
|
|
>>> g2 = +g
|
|
>>> g2
|
|
GlyphCoordinates([(1, 2)])
|
|
>>> g2.translate((1,0))
|
|
>>> g2
|
|
GlyphCoordinates([(2, 2)])
|
|
>>> g
|
|
GlyphCoordinates([(1, 2)])
|
|
"""
|
|
return self.copy()
|
|
def __neg__(self):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g
|
|
GlyphCoordinates([(1, 2)])
|
|
>>> g2 = -g
|
|
>>> g2
|
|
GlyphCoordinates([(-1, -2)])
|
|
>>> g
|
|
GlyphCoordinates([(1, 2)])
|
|
"""
|
|
r = self.copy()
|
|
a = r._a
|
|
for i in range(len(a)):
|
|
a[i] = -a[i]
|
|
return r
|
|
def __round__(self):
|
|
"""
|
|
Note: This is Python 3 only. Python 2 does not call __round__.
|
|
As such, we cannot test this method either. :(
|
|
"""
|
|
r = self.copy()
|
|
r.toInt()
|
|
return r
|
|
|
|
def __add__(self, other): return self.copy().__iadd__(other)
|
|
def __sub__(self, other): return self.copy().__isub__(other)
|
|
def __mul__(self, other): return self.copy().__imul__(other)
|
|
def __truediv__(self, other): return self.copy().__itruediv__(other)
|
|
|
|
__radd__ = __add__
|
|
__rmul__ = __mul__
|
|
def __rsub__(self, other): return other + (-self)
|
|
|
|
def __iadd__(self, other):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g += (.5,0)
|
|
>>> g
|
|
GlyphCoordinates([(1.5, 2.0)])
|
|
>>> g2 = GlyphCoordinates([(3,4)])
|
|
>>> g += g2
|
|
>>> g
|
|
GlyphCoordinates([(4.5, 6.0)])
|
|
"""
|
|
if isinstance(other, tuple):
|
|
assert len(other) == 2
|
|
self.translate(other)
|
|
return self
|
|
if isinstance(other, GlyphCoordinates):
|
|
if other.isFloat(): self._ensureFloat()
|
|
other = other._a
|
|
a = self._a
|
|
assert len(a) == len(other)
|
|
for i in range(len(a)):
|
|
a[i] += other[i]
|
|
return self
|
|
return NotImplemented
|
|
|
|
def __isub__(self, other):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g -= (.5,0)
|
|
>>> g
|
|
GlyphCoordinates([(0.5, 2.0)])
|
|
>>> g2 = GlyphCoordinates([(3,4)])
|
|
>>> g -= g2
|
|
>>> g
|
|
GlyphCoordinates([(-2.5, -2.0)])
|
|
"""
|
|
if isinstance(other, tuple):
|
|
assert len(other) == 2
|
|
self.translate((-other[0],-other[1]))
|
|
return self
|
|
if isinstance(other, GlyphCoordinates):
|
|
if other.isFloat(): self._ensureFloat()
|
|
other = other._a
|
|
a = self._a
|
|
assert len(a) == len(other)
|
|
for i in range(len(a)):
|
|
a[i] -= other[i]
|
|
return self
|
|
return NotImplemented
|
|
|
|
def __imul__(self, other):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g *= (2,.5)
|
|
>>> g *= 2
|
|
>>> g
|
|
GlyphCoordinates([(4.0, 2.0)])
|
|
>>> g = GlyphCoordinates([(1,2)])
|
|
>>> g *= 2
|
|
>>> g
|
|
GlyphCoordinates([(2, 4)])
|
|
"""
|
|
if isinstance(other, Number):
|
|
other = (other, other)
|
|
if isinstance(other, tuple):
|
|
if other == (1,1):
|
|
return self
|
|
assert len(other) == 2
|
|
self.scale(other)
|
|
return self
|
|
return NotImplemented
|
|
|
|
def __itruediv__(self, other):
|
|
"""
|
|
>>> g = GlyphCoordinates([(1,3)])
|
|
>>> g /= (.5,1.5)
|
|
>>> g /= 2
|
|
>>> g
|
|
GlyphCoordinates([(1.0, 1.0)])
|
|
"""
|
|
if isinstance(other, Number):
|
|
other = (other, other)
|
|
if isinstance(other, tuple):
|
|
if other == (1,1):
|
|
return self
|
|
assert len(other) == 2
|
|
self.scale((1./other[0],1./other[1]))
|
|
return self
|
|
return NotImplemented
|
|
|
|
def __bool__(self):
|
|
"""
|
|
>>> g = GlyphCoordinates([])
|
|
>>> bool(g)
|
|
False
|
|
>>> g = GlyphCoordinates([(0,0), (0.,0)])
|
|
>>> bool(g)
|
|
True
|
|
>>> g = GlyphCoordinates([(0,0), (1,0)])
|
|
>>> bool(g)
|
|
True
|
|
>>> g = GlyphCoordinates([(0,.5), (0,0)])
|
|
>>> bool(g)
|
|
True
|
|
"""
|
|
return bool(self._a)
|
|
|
|
__nonzero__ = __bool__
|
|
|
|
|
|
def reprflag(flag):
|
|
bin = ""
|
|
if isinstance(flag, str):
|
|
flag = byteord(flag)
|
|
while flag:
|
|
if flag & 0x01:
|
|
bin = "1" + bin
|
|
else:
|
|
bin = "0" + bin
|
|
flag = flag >> 1
|
|
bin = (14 - len(bin)) * "0" + bin
|
|
return bin
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest, sys
|
|
sys.exit(doctest.testmod().failed)
|