fonttools/Lib/fontTools/cffLib/specializer.py
ReadRoberts a460eee80b varLib. Add support for building CFF2 variable font
Fix syntax error reported by build system: can't mix string string types when doing literal concatenation

Fix local import reference - doesn't work in Python3.

Addressed issues raised by @msousa for PR 1345 yesterday.

Will change cff2_merge_funcs.py and cff2mergePen.py from tab to space indentations after the current comments are resolved.

Add various improvements from comments:
- do not edit the post table under varLib.build(). Setting post table format 2 or 3 is now expected to be managed by whatever calls varLib.build().
- In the t2CharStringPen module, rename closure _round() nested in makeRoundFunc to an exportable function, and use it in cff2mergePen.
- remove TypeSupply copyright from cff2mergePen.
- use modulo function to convert float to int when it is meant to be 0 in cff2mergePen.

cff2_merge_funcs.py:merge_PrivateDicts() should only be blending the hint related fields in the PrivateDict. This oversight that was surfaced by @madig reporting an error building his Cantrell font. The bug appeared when the font was subroutinized, as the pen draw method then has to interpret the Subr field in order to access T2Charstring subroutines.

Fix expected ttx output file. When I removed the logic to add glyph names to the post table, glyph names in the ttx file changed.

Miguel prefers a simple list for readability in cff2_merge_funs.py:138.
2018-11-12 11:38:18 -08:00

603 lines
19 KiB
Python

# -*- coding: utf-8 -*-
"""T2CharString operator specializer and generalizer."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.cffLib import maxStackLimit
def stringToProgram(string):
if isinstance(string, basestring):
string = string.split()
program = []
for token in string:
try:
token = int(token)
except ValueError:
try:
token = float(token)
except ValueError:
pass
program.append(token)
return program
def programToString(program):
return ' '.join(str(x) for x in program)
def programToCommands(program):
"""Takes a T2CharString program list and returns list of commands.
Each command is a two-tuple of commandname,arg-list. The commandname might
be empty string if no commandname shall be emitted (used for glyph width,
hintmask/cntrmask argument, as well as stray arguments at the end of the
program (¯\_(ツ)_/¯)."""
width = None
commands = []
stack = []
it = iter(program)
for token in it:
if not isinstance(token, basestring):
stack.append(token)
continue
if width is None and token in {'hstem', 'hstemhm', 'vstem', 'vstemhm',
'cntrmask', 'hintmask',
'hmoveto', 'vmoveto', 'rmoveto',
'endchar'}:
parity = token in {'hmoveto', 'vmoveto'}
if stack and (len(stack) % 2) ^ parity:
width = stack.pop(0)
commands.append(('', [width]))
if token in {'hintmask', 'cntrmask'}:
if stack:
commands.append(('', stack))
commands.append((token, []))
commands.append(('', [next(it)]))
else:
commands.append((token,stack))
stack = []
if stack:
commands.append(('', stack))
return commands
def commandsToProgram(commands, var_model=None, round_func=None):
"""Takes a commands list as returned by programToCommands() and converts
it back to a T2CharString or CFF2Charstring program list."""
program = []
for op, args in commands:
num_args = len(args)
# some of the args may be blend lists, and some may be
# single coordinate values.
i = 0
stack_use = 0
while i < num_args:
arg = args[i]
if not isinstance(arg, list):
program.append(arg)
i += 1
stack_use += 1
else:
prev_stack_use = stack_use
""" The arg is a tuple of blend values.
These are each (master 0,master 1..master n)
Combine as many successive tuples as we can,
up to the max stack limit.
"""
num_masters = len(arg)
blendlist = [arg]
i += 1
stack_use += 1 + num_masters # 1 for the num_blends arg
while (i < num_args) and isinstance(args[i], list):
blendlist.append(args[i])
i += 1
stack_use += num_masters
if stack_use + num_masters > maxStackLimit:
# if we are here, max stack is is the CFF2 max stack.
break
num_blends = len(blendlist)
# append the 'num_blends' default font values
for arg in blendlist:
if round_func:
arg[0] = round_func(arg[0])
program.append(arg[0])
for arg in blendlist:
# for each coordinate tuple, append the region deltas
deltas = var_model.getDeltas(arg)
if round_func:
deltas = [round_func(delta) for delta in deltas]
# First item in 'deltas' is the default master value;
# for CFF2 data, that has already been written.
program.extend(deltas[1:])
program.append(num_blends)
program.append('blend')
stack_use = prev_stack_use + num_blends
if op:
program.append(op)
return program
def _everyN(el, n):
"""Group the list el into groups of size n"""
if len(el) % n != 0: raise ValueError(el)
for i in range(0, len(el), n):
yield el[i:i+n]
class _GeneralizerDecombinerCommandsMap(object):
@staticmethod
def rmoveto(args):
if len(args) != 2: raise ValueError(args)
yield ('rmoveto', args)
@staticmethod
def hmoveto(args):
if len(args) != 1: raise ValueError(args)
yield ('rmoveto', [args[0], 0])
@staticmethod
def vmoveto(args):
if len(args) != 1: raise ValueError(args)
yield ('rmoveto', [0, args[0]])
@staticmethod
def rlineto(args):
if not args: raise ValueError(args)
for args in _everyN(args, 2):
yield ('rlineto', args)
@staticmethod
def hlineto(args):
if not args: raise ValueError(args)
it = iter(args)
try:
while True:
yield ('rlineto', [next(it), 0])
yield ('rlineto', [0, next(it)])
except StopIteration:
pass
@staticmethod
def vlineto(args):
if not args: raise ValueError(args)
it = iter(args)
try:
while True:
yield ('rlineto', [0, next(it)])
yield ('rlineto', [next(it), 0])
except StopIteration:
pass
@staticmethod
def rrcurveto(args):
if not args: raise ValueError(args)
for args in _everyN(args, 6):
yield ('rrcurveto', args)
@staticmethod
def hhcurveto(args):
if len(args) < 4 or len(args) % 4 > 1: raise ValueError(args)
if len(args) % 2 == 1:
yield ('rrcurveto', [args[1], args[0], args[2], args[3], args[4], 0])
args = args[5:]
for args in _everyN(args, 4):
yield ('rrcurveto', [args[0], 0, args[1], args[2], args[3], 0])
@staticmethod
def vvcurveto(args):
if len(args) < 4 or len(args) % 4 > 1: raise ValueError(args)
if len(args) % 2 == 1:
yield ('rrcurveto', [args[0], args[1], args[2], args[3], 0, args[4]])
args = args[5:]
for args in _everyN(args, 4):
yield ('rrcurveto', [0, args[0], args[1], args[2], 0, args[3]])
@staticmethod
def hvcurveto(args):
if len(args) < 4 or len(args) % 8 not in {0,1,4,5}: raise ValueError(args)
last_args = None
if len(args) % 2 == 1:
lastStraight = len(args) % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ('rrcurveto', [args[0], 0, args[1], args[2], 0, args[3]])
args = next(it)
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], 0])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ('rrcurveto', [args[0], 0, args[1], args[2], args[4], args[3]])
else:
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], args[4]])
@staticmethod
def vhcurveto(args):
if len(args) < 4 or len(args) % 8 not in {0,1,4,5}: raise ValueError(args)
last_args = None
if len(args) % 2 == 1:
lastStraight = len(args) % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], 0])
args = next(it)
yield ('rrcurveto', [args[0], 0, args[1], args[2], 0, args[3]])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], args[4]])
else:
yield ('rrcurveto', [args[0], 0, args[1], args[2], args[4], args[3]])
@staticmethod
def rcurveline(args):
if len(args) < 8 or len(args) % 6 != 2: raise ValueError(args)
args, last_args = args[:-2], args[-2:]
for args in _everyN(args, 6):
yield ('rrcurveto', args)
yield ('rlineto', last_args)
@staticmethod
def rlinecurve(args):
if len(args) < 8 or len(args) % 2 != 0: raise ValueError(args)
args, last_args = args[:-6], args[-6:]
for args in _everyN(args, 2):
yield ('rlineto', args)
yield ('rrcurveto', last_args)
def generalizeCommands(commands, ignoreErrors=False):
result = []
mapping = _GeneralizerDecombinerCommandsMap
for op,args in commands:
func = getattr(mapping, op, None)
if not func:
result.append((op,args))
continue
try:
for command in func(args):
result.append(command)
except ValueError:
if ignoreErrors:
# Store op as data, such that consumers of commands do not have to
# deal with incorrect number of arguments.
result.append(('', args))
result.append(('', [op]))
else:
raise
return result
def generalizeProgram(program, **kwargs):
return commandsToProgram(generalizeCommands(programToCommands(program), **kwargs))
def _categorizeVector(v):
"""
Takes X,Y vector v and returns one of r, h, v, or 0 depending on which
of X and/or Y are zero, plus tuple of nonzero ones. If both are zero,
it returns a single zero still.
>>> _categorizeVector((0,0))
('0', (0,))
>>> _categorizeVector((1,0))
('h', (1,))
>>> _categorizeVector((0,2))
('v', (2,))
>>> _categorizeVector((1,2))
('r', (1, 2))
"""
if not v[0]:
if not v[1]:
return '0', v[:1]
else:
return 'v', v[1:]
else:
if not v[1]:
return 'h', v[:1]
else:
return 'r', v
def _mergeCategories(a, b):
if a == '0': return b
if b == '0': return a
if a == b: return a
return None
def _negateCategory(a):
if a == 'h': return 'v'
if a == 'v': return 'h'
assert a in '0r'
return a
def specializeCommands(commands,
ignoreErrors=False,
generalizeFirst=True,
preserveTopology=False,
maxstack=48):
# We perform several rounds of optimizations. They are carefully ordered and are:
#
# 0. Generalize commands.
# This ensures that they are in our expected simple form, with each line/curve only
# having arguments for one segment, and using the generic form (rlineto/rrcurveto).
# If caller is sure the input is in this form, they can turn off generalization to
# save time.
#
# 1. Combine successive rmoveto operations.
#
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
# We specialize into some, made-up, variants as well, which simplifies following
# passes.
#
# 3. Merge or delete redundant operations, to the extent requested.
# OpenType spec declares point numbers in CFF undefined. As such, we happily
# change topology. If client relies on point numbers (in GPOS anchors, or for
# hinting purposes(what?)) they can turn this off.
#
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
#
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
#
# 6. Resolve any remaining made-up operators into real operators.
#
# I have convinced myself that this produces optimal bytecode (except for, possibly
# one byte each time maxstack size prohibits combining.) YMMV, but you'd be wrong. :-)
# A dynamic-programming approach can do the same but would be significantly slower.
# 0. Generalize commands.
if generalizeFirst:
commands = generalizeCommands(commands, ignoreErrors=ignoreErrors)
else:
commands = list(commands) # Make copy since we modify in-place later.
# 1. Combine successive rmoveto operations.
for i in range(len(commands)-1, 0, -1):
if 'rmoveto' == commands[i][0] == commands[i-1][0]:
v1, v2 = commands[i-1][1], commands[i][1]
commands[i-1] = ('rmoveto', [v1[0]+v2[0], v1[1]+v2[1]])
del commands[i]
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
#
# We, in fact, specialize into more, made-up, variants that special-case when both
# X and Y components are zero. This simplifies the following optimization passes.
# This case is rare, but OCD does not let me skip it.
#
# After this round, we will have four variants that use the following mnemonics:
#
# - 'r' for relative, ie. non-zero X and non-zero Y,
# - 'h' for horizontal, ie. zero X and non-zero Y,
# - 'v' for vertical, ie. non-zero X and zero Y,
# - '0' for zeros, ie. zero X and zero Y.
#
# The '0' pseudo-operators are not part of the spec, but help simplify the following
# optimization rounds. We resolve them at the end. So, after this, we will have four
# moveto and four lineto variants:
#
# - 0moveto, 0lineto
# - hmoveto, hlineto
# - vmoveto, vlineto
# - rmoveto, rlineto
#
# and sixteen curveto variants. For example, a '0hcurveto' operator means a curve
# dx0,dy0,dx1,dy1,dx2,dy2,dx3,dy3 where dx0, dx1, and dy3 are zero but not dx3.
# An 'rvcurveto' means dx3 is zero but not dx0,dy0,dy3.
#
# There are nine different variants of curves without the '0'. Those nine map exactly
# to the existing curve variants in the spec: rrcurveto, and the four variants hhcurveto,
# vvcurveto, hvcurveto, and vhcurveto each cover two cases, one with an odd number of
# arguments and one without. Eg. an hhcurveto with an extra argument (odd number of
# arguments) is in fact an rhcurveto. The operators in the spec are designed such that
# all four of rhcurveto, rvcurveto, hrcurveto, and vrcurveto are encodable for one curve.
#
# Of the curve types with '0', the 00curveto is equivalent to a lineto variant. The rest
# of the curve types with a 0 need to be encoded as a h or v variant. Ie. a '0' can be
# thought of a "don't care" and can be used as either an 'h' or a 'v'. As such, we always
# encode a number 0 as argument when we use a '0' variant. Later on, we can just substitute
# the '0' with either 'h' or 'v' and it works.
#
# When we get to curve splines however, things become more complicated... XXX finish this.
# There's one more complexity with splines. If one side of the spline is not horizontal or
# vertical (or zero), ie. if it's 'r', then it limits which spline types we can encode.
# Only hhcurveto and vvcurveto operators can encode a spline starting with 'r', and
# only hvcurveto and vhcurveto operators can encode a spline ending with 'r'.
# This limits our merge opportunities later.
#
for i in range(len(commands)):
op,args = commands[i]
if op in {'rmoveto', 'rlineto'}:
c, args = _categorizeVector(args)
commands[i] = c+op[1:], args
continue
if op == 'rrcurveto':
c1, args1 = _categorizeVector(args[:2])
c2, args2 = _categorizeVector(args[-2:])
commands[i] = c1+c2+'curveto', args1+args[2:4]+args2
continue
# 3. Merge or delete redundant operations, to the extent requested.
#
# TODO
# A 0moveto that comes before all other path operations can be removed.
# though I find conflicting evidence for this.
#
# TODO
# "If hstem and vstem hints are both declared at the beginning of a
# CharString, and this sequence is followed directly by the hintmask or
# cntrmask operators, then the vstem hint operator (or, if applicable,
# the vstemhm operator) need not be included."
#
# "The sequence and form of a CFF2 CharString program may be represented as:
# {hs* vs* cm* hm* mt subpath}? {mt subpath}*"
#
# https://www.microsoft.com/typography/otspec/cff2charstr.htm#section3.1
#
# For Type2 CharStrings the sequence is:
# w? {hs* vs* cm* hm* mt subpath}? {mt subpath}* endchar"
# Some other redundancies change topology (point numbers).
if not preserveTopology:
for i in range(len(commands)-1, -1, -1):
op, args = commands[i]
# A 00curveto is demoted to a (specialized) lineto.
if op == '00curveto':
assert len(args) == 4
c, args = _categorizeVector(args[1:3])
op = c+'lineto'
commands[i] = op, args
# and then...
# A 0lineto can be deleted.
if op == '0lineto':
del commands[i]
continue
# Merge adjacent hlineto's and vlineto's.
if (i and op in {'hlineto', 'vlineto'} and
(op == commands[i-1][0]) and
(not isinstance(args[0], list))):
_, other_args = commands[i-1]
assert len(args) == 1 and len(other_args) == 1
commands[i-1] = (op, [other_args[0]+args[0]])
del commands[i]
continue
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
for i in range(1, len(commands)-1):
op,args = commands[i]
prv,nxt = commands[i-1][0], commands[i+1][0]
if op in {'0lineto', 'hlineto', 'vlineto'} and prv == nxt == 'rlineto':
assert len(args) == 1
args = [0, args[0]] if op[0] == 'v' else [args[0], 0]
commands[i] = ('rlineto', args)
continue
if op[2:] == 'curveto' and len(args) == 5 and prv == nxt == 'rrcurveto':
assert (op[0] == 'r') ^ (op[1] == 'r')
if op[0] == 'v':
pos = 0
elif op[0] != 'r':
pos = 1
elif op[1] == 'v':
pos = 4
else:
pos = 5
# Insert, while maintaining the type of args (can be tuple or list).
args = args[:pos] + type(args)((0,)) + args[pos:]
commands[i] = ('rrcurveto', args)
continue
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
for i in range(len(commands)-1, 0, -1):
op1,args1 = commands[i-1]
op2,args2 = commands[i]
new_op = None
# Merge logic...
if {op1, op2} <= {'rlineto', 'rrcurveto'}:
if op1 == op2:
new_op = op1
else:
if op2 == 'rrcurveto' and len(args2) == 6:
new_op = 'rlinecurve'
elif len(args2) == 2:
new_op = 'rcurveline'
elif (op1, op2) in {('rlineto', 'rlinecurve'), ('rrcurveto', 'rcurveline')}:
new_op = op2
elif {op1, op2} == {'vlineto', 'hlineto'}:
new_op = op1
elif 'curveto' == op1[2:] == op2[2:]:
d0, d1 = op1[:2]
d2, d3 = op2[:2]
if d1 == 'r' or d2 == 'r' or d0 == d3 == 'r':
continue
d = _mergeCategories(d1, d2)
if d is None: continue
if d0 == 'r':
d = _mergeCategories(d, d3)
if d is None: continue
new_op = 'r'+d+'curveto'
elif d3 == 'r':
d0 = _mergeCategories(d0, _negateCategory(d))
if d0 is None: continue
new_op = d0+'r'+'curveto'
else:
d0 = _mergeCategories(d0, d3)
if d0 is None: continue
new_op = d0+d+'curveto'
# Make sure the stack depth does not exceed (maxstack - 1), so
# that subroutinizer can insert subroutine calls at any point.
if new_op and len(args1) + len(args2) < maxstack:
commands[i-1] = (new_op, args1+args2)
del commands[i]
# 6. Resolve any remaining made-up operators into real operators.
for i in range(len(commands)):
op,args = commands[i]
if op in {'0moveto', '0lineto'}:
commands[i] = 'h'+op[1:], args
continue
if op[2:] == 'curveto' and op[:2] not in {'rr', 'hh', 'vv', 'vh', 'hv'}:
op0, op1 = op[:2]
if (op0 == 'r') ^ (op1 == 'r'):
assert len(args) % 2 == 1
if op0 == '0': op0 = 'h'
if op1 == '0': op1 = 'h'
if op0 == 'r': op0 = op1
if op1 == 'r': op1 = _negateCategory(op0)
assert {op0,op1} <= {'h','v'}, (op0, op1)
if len(args) % 2:
if op0 != op1: # vhcurveto / hvcurveto
if (op0 == 'h') ^ (len(args) % 8 == 1):
# Swap last two args order
args = args[:-2]+args[-1:]+args[-2:-1]
else: # hhcurveto / vvcurveto
if op0 == 'h': # hhcurveto
# Swap first two args order
args = args[1:2]+args[:1]+args[2:]
commands[i] = op0+op1+'curveto', args
continue
return commands
def specializeProgram(program, **kwargs):
return commandsToProgram(specializeCommands(programToCommands(program), **kwargs))
if __name__ == '__main__':
import sys
if len(sys.argv) == 1:
import doctest
sys.exit(doctest.testmod().failed)
program = stringToProgram(sys.argv[1:])
print("Program:"); print(programToString(program))
commands = programToCommands(program)
print("Commands:"); print(commands)
program2 = commandsToProgram(commands)
print("Program from commands:"); print(programToString(program2))
assert program == program2
print("Generalized program:"); print(programToString(generalizeProgram(program)))
print("Specialized program:"); print(programToString(specializeProgram(program)))