fonttools/Lib/fontTools/cffLib/specializer.py
Behdad Esfahbod a5ca6c49f2 [cffLib.specializer] Fix hvcurveto/vhcurveto argument swapping logic
Fixes remaining 2 failing tests.
2017-05-06 01:44:19 -06:00

550 lines
18 KiB
Python

# -*- coding: utf-8 -*-
"""T2CharString operator specializer and generalizer."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
def programToCommands(program):
"""Takes a T2CharString program list and returns list of commands.
Each command is a two-tuple of commandname,arg-list. The commandname might
be None if no commandname shall be emitted (used for glyph width (TODO),
hintmask/cntrmask argument, as well as stray arguments at the end of the
program (¯\_(ツ)_/¯)."""
commands = []
stack = []
it = iter(program)
for token in it:
if not isinstance(token, basestring):
stack.append(token)
continue
if token in {'hintmask', 'cntrmask'}:
if stack:
commands.append((None, stack))
commands.append((token, []))
commands.append((None, [next(it)]))
else:
commands.append((token,stack))
stack = []
if stack:
commands.append((None, stack))
return commands
def commandsToProgram(commands):
"""Takes a commands list as returned by programToCommands() and converts
it back to a T2CharString program list."""
program = []
for op,args in commands:
program.extend(args)
if op:
program.append(op)
return program
def _everyN(el, n):
"""Group the list el into groups of size n"""
if len(el) % n != 0: raise ValueError(el)
for i in range(0, len(el), n):
yield el[i:i+n]
class _GeneralizerDecombinerCommandsMap(object):
@staticmethod
def rmoveto(args):
if len(args) != 2: raise ValueError(args)
yield ('rmoveto', args)
@staticmethod
def hmoveto(args):
if len(args) != 1: raise ValueError(args)
yield ('rmoveto', [args[0], 0])
@staticmethod
def vmoveto(args):
if len(args) != 1: raise ValueError(args)
yield ('rmoveto', [0, args[0]])
@staticmethod
def rlineto(args):
for args in _everyN(args, 2):
yield ('rlineto', args)
@staticmethod
def hlineto(args):
it = iter(args)
while True:
yield ('rlineto', [next(it), 0])
yield ('rlineto', [0, next(it)])
@staticmethod
def vlineto(args):
it = iter(args)
while True:
yield ('rlineto', [0, next(it)])
yield ('rlineto', [next(it), 0])
@staticmethod
def rrcurveto(args):
for args in _everyN(args, 6):
yield ('rrcurveto', args)
@staticmethod
def hhcurveto(args):
if len(args) < 4 or len(args) % 4 > 1: raise ValueError(args)
if len(args) % 2 == 1:
yield ('rrcurveto', [args[1], args[0], args[2], args[3], args[4], 0])
args = args[5:]
for args in _everyN(args, 4):
yield ('rrcurveto', [args[0], 0, args[1], args[2], args[3], 0])
@staticmethod
def vvcurveto(args):
if len(args) < 4 or len(args) % 4 > 1: raise ValueError(args)
if len(args) % 2 == 1:
yield ('rrcurveto', [args[0], args[1], args[2], args[3], 0, args[4]])
args = args[5:]
for args in _everyN(args, 4):
yield ('rrcurveto', [0, args[0], args[1], args[2], 0, args[3]])
@staticmethod
def hvcurveto(args):
if len(args) < 4 or len(args) % 8 not in {0,1,4,5}: raise ValueError(args)
last_args = None
if len(args) % 2 == 1:
lastStraight = len(args) % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ('rrcurveto', [args[0], 0, args[1], args[2], 0, args[3]])
args = next(it)
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], 0])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ('rrcurveto', [args[0], 0, args[1], args[2], args[4], args[3]])
else:
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], args[4]])
@staticmethod
def vhcurveto(args):
if len(args) < 4 or len(args) % 8 not in {0,1,4,5}: raise ValueError(args)
last_args = None
if len(args) % 2 == 1:
lastStraight = len(args) % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], 0])
args = next(it)
yield ('rrcurveto', [args[0], 0, args[1], args[2], 0, args[3]])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ('rrcurveto', [0, args[0], args[1], args[2], args[3], args[4]])
else:
yield ('rrcurveto', [args[0], 0, args[1], args[2], args[4], args[3]])
@staticmethod
def rcurveline(args):
if len(args) < 8 or len(args) % 6 != 2: raise ValueError(args)
args, last_args = args[:-2], args[-2:]
for args in _everyN(args, 6):
yield ('rrcurveto', args)
yield ('rlineto', last_args)
@staticmethod
def rlinecurve(args):
if len(args) < 8 or len(args) % 2 != 0: raise ValueError(args)
args, last_args = args[:-6], args[-6:]
for args in _everyN(args, 2):
yield ('rlineto', args)
yield ('rrcurveto', last_args)
def generalizeCommands(commands, ignoreErrors=True):
result = []
mapping = _GeneralizerDecombinerCommandsMap
for op,args in commands:
func = getattr(mapping, op if op else '', None)
if not func:
result.append((op,args))
continue
try:
for command in func(args):
result.append(command)
except ValueError:
if ignoreErrors:
# Store op as data, such that consumers of commands do not have to
# deal with incorrect number of arguments.
result.append((None,args))
result.append((None, [op]))
else:
raise
return result
def generalizeProgram(program, **kwargs):
return commandsToProgram(generalizeCommands(programToCommands(program), **kwargs))
def _categorizeVector(v):
"""
Takes X,Y vector v and returns one of r, h, v, or 0 depending on which
of X and/or Y are zero, plus tuple of nonzero ones. If both are zero,
it returns a single zero still.
>>> _categorizeVector((0,0))
('0', (0,))
>>> _categorizeVector((1,0))
('h', (1,))
>>> _categorizeVector((0,2))
('v', (2,))
>>> _categorizeVector((1,2))
('r', (1, 2))
"""
if v[0] == 0:
if v[1] == 0:
return '0', type(v)((0,))
else:
return 'v', v[1:]
else:
if v[1] == 0:
return 'h', v[:1]
else:
return 'r', v
return "rvh0"[(v[1]==0) * 2 + (v[0]==0)]
def _mergeCategories(a, b, dontCare):
if a == dontCare: return b
if b == dontCare: return a
if a == b: return a
return None
def _applyJoint(a, b, j):
if j == '.' or a == 'r' or b == 'r': return a, b
if a != '0':
c = 'hv'[(a == 'v') ^ (j == '+')]
assert b == '0' or b == c
b = c
else:
a = 'hv'[(b == 'v') ^ (j == '+')]
return a, b
def specializeCommands(commands,
ignoreErrors=False,
generalizeFirst=True,
preserveTopology=False,
maxstack=48):
maxstack -= 3 # AFDKO code uses effective 45 maxstack while the spec says 48.
# We perform several rounds of optimizations. They are carefully ordered and are:
#
# 0. Generalize commands.
# This ensures that they are in our expected simple form, with each line/curve only
# having arguments for one segment, and using the generic form (rlineto/rrcurveto).
# If caller is sure the input is in this form, they can turn off generalization to
# save time.
#
# 1. Combine successive rmoveto operations.
#
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
# We specialize into some, made-up, variants as well, which simplifies following
# passes.
#
# 3. Merge or delete redundant operations, if changing topology is allowed.
# OpenType spec declares point numbers in CFF undefined. As such, we happily
# change topology. If client relies on point numbers (in GPOS anchors, or for
# hinting purposes(what?)) they can turn this off.
#
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
#
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
#
# 6. Resolve any remaining made-up operators into real operators.
#
# I have convinced myself that this produces optimal bytecode (except for, possibly
# one byte each time maxstack size prohibits combining.) YMMV, but you'd be wrong. :-)
# A dynamic-programming approach can do the same but would be significantly slower.
# 0. Generalize commands.
if generalizeFirst:
commands = generalizeCommands(commands, ignoreErrors=ignoreErrors)
else:
commands = commands[:] # Make copy since we modify in-place later.
# 1. Combine successive rmoveto operations.
for i in range(len(commands)-1, 0, -1):
if 'rmoveto' == commands[i][0] == commands[i-1][0]:
v1, v2 = commands[i-1][1], commands[i][1]
commands[i-1] = ('rmoveto', [v1[0]+v2[0], v1[1]+v2[1]])
del commands[i]
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
#
# We, in fact, specialize into more, made-up, variants that special-case when both
# X and Y components are zero. This simplifies the following optimization passes.
# This case is rare, but OCD does not let me skip it.
#
# After this round, we will have four variants that use the following mnemonics:
#
# - 'r' for relative, ie. non-zero X and non-zero Y,
# - 'h' for horizontal, ie. zero X and non-zero Y,
# - 'v' for vertical, ie. non-zero X and zero Y,
# - '0' for zeros, ie. zero X and zero Y.
#
# The '0' pseudo-operators are not part of the spec, but help simplify the following
# optimization rounds. We resolve them at the end. So, after this, we will have four
# moveto and four lineto variants:
#
# - 0moveto, 0lineto
# - hmoveto, hlineto
# - vmoveto, vlineto
# - rmoveto, rlineto
#
# and sixteen curveto variants. For example, a '0hcurveto' operator means a curve
# dx0,dy0,dx1,dy1,dx2,dy2,dx3,dy3 where dx0, dx1, and dy3 are zero but not dx3.
# An 'rvcurveto' means dx3 is zero but not dx0,dy0,dy3.
#
# There are nine different variants of curves without the '0'. Those nine map exactly
# to the existing curve variants in the spec: rrcurveto, and the four variants hhcurveto,
# vvcurveto, hvcurveto, and vhcurveto each cover two cases, one with an odd number of
# arguments and one without. Eg. an hhcurveto with an extra argument (odd number of
# arguments) is in fact an rhcurveto. The operators in the spec are designed such that
# all four of rhcurveto, rvcurveto, hrcurveto, and vrcurveto are encodable.
#
# Of the curve types with '0', the 00curveto is equivalent to a lineto variant. The rest
# of the curve types with a 0 need to be encoded as a h or v variant. Ie. a '0' can be
# thought of a "don't care" and can be used as either an 'h' or a 'v'. As such, we always
# encode a number 0 as argument when we use a '0' variant. Later on, we can just substitute
# the '0' with either 'h' or 'v' and it works.
#
# When we get to curve splines however, things become more complicated. When we have a
# curve spline that starts and ends horizontally, there are two different cases, one
# where all curves start and end horizontally, another when curves alternate between
# horizontal-vertical and vertical-horizontal. To distinguish these cases, we use an
# extra character in the pseudo-operator names that signifies the spline type:
#
# - '+' means a spline where curves alternate between horizontal and vertical orientations,
# and is called a "pizza-slice" spline.
# - '=' means a spline where all curves start and end in the same orientation (h or v),
# and is called a "french-fries" spline.
# - '.' means "don't care", ie. the spline can be encoded / treated as either a pizzal-slice
# or french-fries. This happens where 0s are involved in curves, because those can
# be encoded as both h and v.
#
# So, from here one, we use rrcurveto as is, but for other variants of curves we use three
# mnemonic signifiers. For example, 'h+vcurveto', or 'r.0curveto'. Rules for combining
# these will be defined later.
#
# There's one more complexity with splines. If one side of the spline is not horizontal or
# vertical (or zero), ie. if it's 'r', then it limits which spline types we can encode.
# Only spline type '=' can start with an 'r' (hhcurveto and vvcurveto operators), and
# only spline type '+' can end in an 'r' (hvcurveto and vhcurveto operators).
#
for i in range(len(commands)):
op,args = commands[i]
if op in {'rmoveto', 'rlineto'}:
c, args = _categorizeVector(args)
commands[i] = c+op[1:], args
continue
if op == 'rrcurveto':
c1, args1 = _categorizeVector(args[:2])
c2, args2 = _categorizeVector(args[-2:])
if c1 == c2 == 'r':
continue
join = '.'
if c1 == 'r':
join = '='
elif c2 == 'r':
join = '+'
elif c1 != '0' and c2 != '0':
# Both sides are h and/or v
join = '=' if c1 == c2 else '+'
commands[i] = c1+join+c2+'curveto', args1+args[2:4]+args2
continue
# 3. Merge or delete redundant operations, if changing topology is allowed.
if not preserveTopology:
for i in range(len(commands)-1, -1, -1):
op, args = commands[i]
# A 0x0curveto is demoted to a (specialized) lineto.
if op == '0x0curveto':
assert len(args) == 4
c, args = _categorizeVector(args[1:3])
op = c+'lineto'
commands[i] = op, args
# and then...
# A 0lineto can be deleted.
if op == '0lineto':
del commands[i]
continue
# Merge adjacent hlineto's and vlineto's.
if i and op in {'hlineto', 'vlineto'} and op == commands[i-1][0]:
_, other_args = commands[i-1]
assert len(args) == 1 and len(other_args) == 1
commands[i-1] = (op, [other_args[0]+args[0]])
del commands[i]
continue
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
for i in range(1, len(commands)-1):
op,args = commands[i]
prv,nxt = commands[i-1][0], commands[i+1][0]
if op in {'0lineto', 'hlineto', 'vlineto'} and prv == nxt == 'rlineto':
assert len(args) == 1
args = [0, args[0]] if op[0] == 'v' else [args[0], 0]
commands[i] = ('rlineto', args)
continue
if op[3:] == 'curveto' and len(args) == 5 and prv == nxt == 'rrcurveto':
assert (op[0] == 'r') ^ (op[2] == 'r')
args = args[:]
if op[0] == 'v':
pos = 0
elif op[0] != 'r':
pos = 1
elif op[1] == 'v':
pos = 4
else:
pos = 5
args.insert(pos, 0)
commands[i] = ('rrcurveto', args)
continue
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
for i in range(len(commands)-1, 0, -1):
op1,args1 = commands[i-1]
op2,args2 = commands[i]
new_op = None
# Merge logic...
if {op1, op2} <= {'rlineto', 'rrcurveto'}:
if op1 == op2:
new_op = op1
else:
if op2 == 'rrcurveto' and len(args2) == 6:
new_op = 'rlinecurve'
elif len(args2) == 2:
new_op = 'rcurveline'
elif {op1, op2} == {'vlineto', 'hlineto'}:
new_op = op1
elif 'curveto' == op1[3:] == op2[3:]:
# Two curves can merge if their spline types are compatible, ie.
# at least one is a wildcard spline ('.') or otherwise the two are
# both pizza ('+') or both fries ('='), and
#
# The joining orientations are NOT 'r', and are compatible, ie.
# at least one is a '0', or otherwise they are both 'h' or both
# 'v'.
#
# The _mergeCategories() function does such compatibility matching.
d0, j1, d1 = op1[:3]
d2, j2, d3 = op2[:3]
j = _mergeCategories(j1, j2, '.')
d = _mergeCategories(d1, d2, '0')
if j and d and d != 'r':
if j == '.' and d != '0':
# Need to resolve join, if middle is oriented but
# join type is free... Happens for example for:
#
# 0 0 1 2 3 0 rrcurveto 4 0 5 6 0 0 rrcurveto
#
# which can be combined both into a h=hcurveto, or
# a v+vcurveto. But would be wrong to combine into
# 0.0curveto. That would lose the orientation of the
# middle segments!!
#
# Ok, this is one place that now I'm convinced my model
# is not powerful enough... and maybe dynamic-programming
# is needed after all. I'll keep thinking about how
# to fix this without too much work...
j = '=' # XXX arbitrary
# Propagate...
d0,d = _applyJoint(d0, d, j) # WRONG?
d,d3 = _applyJoint(d, d3, j) # WRONG?
d0,d = _applyJoint(d0, d, j) # WRONG?
new_op = d0+j+d3+'curveto'
if new_op and len(args1) + len(args2) <= maxstack:
commands[i-1] = (new_op, args1+args2)
del commands[i]
# 6. Resolve any remaining made-up operators into real operators.
for i in range(len(commands)):
op,args = commands[i]
if op in {'0moveto', '0lineto'}:
commands[i] = 'h'+op[1:], args
continue
if op[3:] == 'curveto':
if op[0] == 'r' or op[2] == 'r':
assert len(args) % 2 == 1
if op[1] == '+':
if (op[0] == 'v' or
(op[2] == 'h' and len(args) % 8 >= 4) or
(op[2] == 'v' and len(args) % 8 < 4)):
op = 'vhcurveto'
else:
op = 'hvcurveto'
if len(args) % 2 == 1 and ((op[0] == 'h') ^ (len(args) % 8 == 1)):
# Swap last two args order
args = args[:-2]+args[-1:]+args[-2:-1]
else:
op = 'vvcurveto' if op[0] == 'v' or op[2] == 'v' else 'hhcurveto'
if len(args) % 2 == 1 and op[0] == 'h':
# Swap first two args order
args = args[1:2]+args[:1]+args[2:]
commands[i] = op, args
continue
return commands
def specializeProgram(program, **kwargs):
return commandsToProgram(specializeCommands(programToCommands(program), **kwargs))
if __name__ == '__main__':
import sys
if len(sys.argv) == 1:
import doctest
sys.exit(doctest.testmod().failed)
program = []
for token in sys.argv[1:]:
try:
token = int(token)
except ValueError:
try:
token = float(token)
except ValueError:
pass
program.append(token)
print("Program:"); print(program)
commands = programToCommands(program)
print("Commands:"); print(commands)
program2 = commandsToProgram(commands)
print("Program from commands:"); print(program2)
assert program == program2
print("Generalized program:"); print(generalizeProgram(program))
print("Specialized program:"); print(specializeProgram(program))