On python2.7, the fonttools py23 module registers a 'lastResort' StreamHandler
similar to the one found in python3's logging module, that always writes
to the current value `sys.stderr`.
This also applies to any python library that imports from fontTools.misc.py23
under python2.7.
The logging module has a 'shutdown' atexit handler that flushes all the
logging handlers' streams just before the python interpreter exits.
Sometimes (e.g. when calling `python setup.py test` as in MutatorMath's test
suite), the interpreter termination ends with a traceback, which is
triggered by the atexit handler failing to flush the lastResort handler's
stream, sys.stderr
AttributeError: None has no attribute 'stderr'
This is because during module teardown, the globals (in this case 'sys')
are set to None, and the order in which modules are deleted is not
guaranteed.
See 58531934a8
483 lines
14 KiB
Python
483 lines
14 KiB
Python
"""Python 2/3 compat layer."""
|
|
|
|
from __future__ import print_function, division, absolute_import
|
|
import sys
|
|
|
|
|
|
__all__ = ['basestring', 'unicode', 'unichr', 'byteord', 'bytechr', 'BytesIO',
|
|
'StringIO', 'UnicodeIO', 'strjoin', 'bytesjoin', 'tobytes', 'tostr',
|
|
'tounicode', 'Tag', 'open', 'range', 'xrange', 'round', 'Py23Error']
|
|
|
|
|
|
class Py23Error(NotImplementedError):
|
|
pass
|
|
|
|
|
|
PY3 = sys.version_info[0] == 3
|
|
PY2 = sys.version_info[0] == 2
|
|
|
|
|
|
try:
|
|
basestring = basestring
|
|
except NameError:
|
|
basestring = str
|
|
|
|
try:
|
|
unicode = unicode
|
|
except NameError:
|
|
unicode = str
|
|
|
|
try:
|
|
unichr = unichr
|
|
|
|
if sys.maxunicode < 0x10FFFF:
|
|
# workarounds for Python 2 "narrow" builds with UCS2-only support.
|
|
|
|
_narrow_unichr = unichr
|
|
|
|
def unichr(i):
|
|
"""
|
|
Return the unicode character whose Unicode code is the integer 'i'.
|
|
The valid range is 0 to 0x10FFFF inclusive.
|
|
|
|
>>> _narrow_unichr(0xFFFF + 1)
|
|
Traceback (most recent call last):
|
|
File "<stdin>", line 1, in ?
|
|
ValueError: unichr() arg not in range(0x10000) (narrow Python build)
|
|
>>> unichr(0xFFFF + 1) == u'\U00010000'
|
|
True
|
|
>>> unichr(1114111) == u'\U0010FFFF'
|
|
True
|
|
>>> unichr(0x10FFFF + 1)
|
|
Traceback (most recent call last):
|
|
File "<stdin>", line 1, in ?
|
|
ValueError: unichr() arg not in range(0x110000)
|
|
"""
|
|
try:
|
|
return _narrow_unichr(i)
|
|
except ValueError:
|
|
try:
|
|
padded_hex_str = hex(i)[2:].zfill(8)
|
|
escape_str = "\\U" + padded_hex_str
|
|
return escape_str.decode("unicode-escape")
|
|
except UnicodeDecodeError:
|
|
raise ValueError('unichr() arg not in range(0x110000)')
|
|
|
|
import re
|
|
_unicode_escape_RE = re.compile(r'\\U[A-Fa-f0-9]{8}')
|
|
|
|
def byteord(c):
|
|
"""
|
|
Given a 8-bit or unicode character, return an integer representing the
|
|
Unicode code point of the character. If a unicode argument is given, the
|
|
character's code point must be in the range 0 to 0x10FFFF inclusive.
|
|
|
|
>>> ord(u'\U00010000')
|
|
Traceback (most recent call last):
|
|
File "<stdin>", line 1, in ?
|
|
TypeError: ord() expected a character, but string of length 2 found
|
|
>>> byteord(u'\U00010000') == 0xFFFF + 1
|
|
True
|
|
>>> byteord(u'\U0010FFFF') == 1114111
|
|
True
|
|
"""
|
|
try:
|
|
return ord(c)
|
|
except TypeError as e:
|
|
try:
|
|
escape_str = c.encode('unicode-escape')
|
|
if not _unicode_escape_RE.match(escape_str):
|
|
raise
|
|
hex_str = escape_str[3:]
|
|
return int(hex_str, 16)
|
|
except:
|
|
raise TypeError(e)
|
|
|
|
else:
|
|
byteord = ord
|
|
bytechr = chr
|
|
|
|
except NameError:
|
|
unichr = chr
|
|
def bytechr(n):
|
|
return bytes([n])
|
|
def byteord(c):
|
|
return c if isinstance(c, int) else ord(c)
|
|
|
|
|
|
# the 'io' module provides the same I/O interface on both 2 and 3.
|
|
# here we define an alias of io.StringIO to disambiguate it eternally...
|
|
from io import BytesIO
|
|
from io import StringIO as UnicodeIO
|
|
try:
|
|
# in python 2, by 'StringIO' we still mean a stream of *byte* strings
|
|
from StringIO import StringIO
|
|
except ImportError:
|
|
# in Python 3, we mean instead a stream of *unicode* strings
|
|
StringIO = UnicodeIO
|
|
|
|
|
|
def strjoin(iterable, joiner=''):
|
|
return tostr(joiner).join(iterable)
|
|
|
|
def tobytes(s, encoding='ascii', errors='strict'):
|
|
if not isinstance(s, bytes):
|
|
return s.encode(encoding, errors)
|
|
else:
|
|
return s
|
|
def tounicode(s, encoding='ascii', errors='strict'):
|
|
if not isinstance(s, unicode):
|
|
return s.decode(encoding, errors)
|
|
else:
|
|
return s
|
|
|
|
if str == bytes:
|
|
class Tag(str):
|
|
def tobytes(self):
|
|
if isinstance(self, bytes):
|
|
return self
|
|
else:
|
|
return self.encode('latin1')
|
|
|
|
tostr = tobytes
|
|
|
|
bytesjoin = strjoin
|
|
else:
|
|
class Tag(str):
|
|
|
|
@staticmethod
|
|
def transcode(blob):
|
|
if not isinstance(blob, str):
|
|
blob = blob.decode('latin-1')
|
|
return blob
|
|
|
|
def __new__(self, content):
|
|
return str.__new__(self, self.transcode(content))
|
|
def __ne__(self, other):
|
|
return not self.__eq__(other)
|
|
def __eq__(self, other):
|
|
return str.__eq__(self, self.transcode(other))
|
|
|
|
def __hash__(self):
|
|
return str.__hash__(self)
|
|
|
|
def tobytes(self):
|
|
return self.encode('latin-1')
|
|
|
|
tostr = tounicode
|
|
|
|
def bytesjoin(iterable, joiner=b''):
|
|
return tobytes(joiner).join(tobytes(item) for item in iterable)
|
|
|
|
|
|
import os
|
|
import io as _io
|
|
|
|
try:
|
|
from msvcrt import setmode as _setmode
|
|
except ImportError:
|
|
_setmode = None # only available on the Windows platform
|
|
|
|
|
|
def open(file, mode='r', buffering=-1, encoding=None, errors=None,
|
|
newline=None, closefd=True, opener=None):
|
|
""" Wrapper around `io.open` that bridges the differences between Python 2
|
|
and Python 3's built-in `open` functions. In Python 2, `io.open` is a
|
|
backport of Python 3's `open`, whereas in Python 3, it is an alias of the
|
|
built-in `open` function.
|
|
|
|
One difference is that the 'opener' keyword argument is only supported in
|
|
Python 3. Here we pass the value of 'opener' only when it is not None.
|
|
This causes Python 2 to raise TypeError, complaining about the number of
|
|
expected arguments, so it must be avoided in py2 or py2-3 contexts.
|
|
|
|
Another difference between 2 and 3, this time on Windows, has to do with
|
|
opening files by name or by file descriptor.
|
|
|
|
On the Windows C runtime, the 'O_BINARY' flag is defined which disables
|
|
the newlines translation ('\r\n' <=> '\n') when reading/writing files.
|
|
On both Python 2 and 3 this flag is always set when opening files by name.
|
|
This way, the newlines translation at the MSVCRT level doesn't interfere
|
|
with the Python io module's own newlines translation.
|
|
|
|
However, when opening files via fd, on Python 2 the fd is simply copied,
|
|
regardless of whether it has the 'O_BINARY' flag set or not.
|
|
This becomes a problem in the case of stdout, stdin, and stderr, because on
|
|
Windows these are opened in text mode by default (ie. don't have the
|
|
O_BINARY flag set).
|
|
|
|
On Python 3, this issue has been fixed, and all fds are now opened in
|
|
binary mode on Windows, including standard streams. Similarly here, I use
|
|
the `_setmode` function to ensure that integer file descriptors are
|
|
O_BINARY'ed before I pass them on to io.open.
|
|
|
|
For more info, see: https://bugs.python.org/issue10841
|
|
"""
|
|
if isinstance(file, int):
|
|
# the 'file' argument is an integer file descriptor
|
|
fd = file
|
|
if fd < 0:
|
|
raise ValueError('negative file descriptor')
|
|
if _setmode:
|
|
# `_setmode` function sets the line-end translation and returns the
|
|
# value of the previous mode. AFAIK there's no `_getmode`, so to
|
|
# check if the previous mode already had the bit set, I fist need
|
|
# to duplicate the file descriptor, set the binary flag on the copy
|
|
# and check the returned value.
|
|
fdcopy = os.dup(fd)
|
|
current_mode = _setmode(fdcopy, os.O_BINARY)
|
|
if not (current_mode & os.O_BINARY):
|
|
# the binary mode was not set: use the file descriptor's copy
|
|
file = fdcopy
|
|
if closefd:
|
|
# close the original file descriptor
|
|
os.close(fd)
|
|
else:
|
|
# ensure the copy is closed when the file object is closed
|
|
closefd = True
|
|
else:
|
|
# original file descriptor already had binary flag, close copy
|
|
os.close(fdcopy)
|
|
|
|
if opener is not None:
|
|
# "opener" is not supported on Python 2, use it at your own risk!
|
|
return _io.open(
|
|
file, mode, buffering, encoding, errors, newline, closefd,
|
|
opener=opener)
|
|
else:
|
|
return _io.open(
|
|
file, mode, buffering, encoding, errors, newline, closefd)
|
|
|
|
|
|
# always use iterator for 'range' on both py 2 and 3
|
|
try:
|
|
range = xrange
|
|
except NameError:
|
|
range = range
|
|
|
|
def xrange(*args, **kwargs):
|
|
raise Py23Error("'xrange' is not defined. Use 'range' instead.")
|
|
|
|
|
|
import math as _math
|
|
|
|
try:
|
|
isclose = _math.isclose
|
|
except AttributeError:
|
|
# math.isclose() was only added in Python 3.5
|
|
|
|
_isinf = _math.isinf
|
|
_fabs = _math.fabs
|
|
|
|
def isclose(a, b, rel_tol=1e-09, abs_tol=0):
|
|
"""
|
|
Python 2 implementation of Python 3.5 math.isclose()
|
|
https://hg.python.org/cpython/file/v3.5.2/Modules/mathmodule.c#l1993
|
|
"""
|
|
# sanity check on the inputs
|
|
if rel_tol < 0 or abs_tol < 0:
|
|
raise ValueError("tolerances must be non-negative")
|
|
# short circuit exact equality -- needed to catch two infinities of
|
|
# the same sign. And perhaps speeds things up a bit sometimes.
|
|
if a == b:
|
|
return True
|
|
# This catches the case of two infinities of opposite sign, or
|
|
# one infinity and one finite number. Two infinities of opposite
|
|
# sign would otherwise have an infinite relative tolerance.
|
|
# Two infinities of the same sign are caught by the equality check
|
|
# above.
|
|
if _isinf(a) or _isinf(b):
|
|
return False
|
|
# Cast to float to allow decimal.Decimal arguments
|
|
if not isinstance(a, float):
|
|
a = float(a)
|
|
if not isinstance(b, float):
|
|
b = float(b)
|
|
# now do the regular computation
|
|
# this is essentially the "weak" test from the Boost library
|
|
diff = _fabs(b - a)
|
|
result = ((diff <= _fabs(rel_tol * a)) or
|
|
(diff <= _fabs(rel_tol * b)) or
|
|
(diff <= abs_tol))
|
|
return result
|
|
|
|
|
|
import decimal as _decimal
|
|
|
|
if PY3:
|
|
def round2(number, ndigits=None):
|
|
"""
|
|
Implementation of Python 2 built-in round() function.
|
|
|
|
Rounds a number to a given precision in decimal digits (default
|
|
0 digits). The result is a floating point number. Values are rounded
|
|
to the closest multiple of 10 to the power minus ndigits; if two
|
|
multiples are equally close, rounding is done away from 0.
|
|
|
|
ndigits may be negative.
|
|
|
|
See Python 2 documentation:
|
|
https://docs.python.org/2/library/functions.html?highlight=round#round
|
|
"""
|
|
if ndigits is None:
|
|
ndigits = 0
|
|
|
|
if ndigits < 0:
|
|
exponent = 10 ** (-ndigits)
|
|
quotient, remainder = divmod(number, exponent)
|
|
if remainder >= exponent//2 and number >= 0:
|
|
quotient += 1
|
|
return float(quotient * exponent)
|
|
else:
|
|
exponent = _decimal.Decimal('10') ** (-ndigits)
|
|
|
|
d = _decimal.Decimal.from_float(number).quantize(
|
|
exponent, rounding=_decimal.ROUND_HALF_UP)
|
|
|
|
return float(d)
|
|
|
|
if sys.version_info[:2] >= (3, 6):
|
|
# in Python 3.6, 'round3' is an alias to the built-in 'round'
|
|
round = round3 = round
|
|
else:
|
|
# in Python3 < 3.6 we need work around the inconsistent behavior of
|
|
# built-in round(), whereby floats accept a second None argument,
|
|
# while integers raise TypeError. See https://bugs.python.org/issue27936
|
|
_round = round
|
|
|
|
def round3(number, ndigits=None):
|
|
return _round(number) if ndigits is None else _round(number, ndigits)
|
|
|
|
round = round3
|
|
|
|
else:
|
|
# in Python 2, 'round2' is an alias to the built-in 'round' and
|
|
# 'round' is shadowed by 'round3'
|
|
round2 = round
|
|
|
|
def round3(number, ndigits=None):
|
|
"""
|
|
Implementation of Python 3 built-in round() function.
|
|
|
|
Rounds a number to a given precision in decimal digits (default
|
|
0 digits). This returns an int when ndigits is omitted or is None,
|
|
otherwise the same type as the number.
|
|
|
|
Values are rounded to the closest multiple of 10 to the power minus
|
|
ndigits; if two multiples are equally close, rounding is done toward
|
|
the even choice (aka "Banker's Rounding"). For example, both round(0.5)
|
|
and round(-0.5) are 0, and round(1.5) is 2.
|
|
|
|
ndigits may be negative.
|
|
|
|
See Python 3 documentation:
|
|
https://docs.python.org/3/library/functions.html?highlight=round#round
|
|
|
|
Derived from python-future:
|
|
https://github.com/PythonCharmers/python-future/blob/master/src/future/builtins/newround.py
|
|
"""
|
|
if ndigits is None:
|
|
ndigits = 0
|
|
# return an int when called with one argument
|
|
totype = int
|
|
# shortcut if already an integer, or a float with no decimal digits
|
|
inumber = totype(number)
|
|
if inumber == number:
|
|
return inumber
|
|
else:
|
|
# return the same type as the number, when called with two arguments
|
|
totype = type(number)
|
|
|
|
m = number * (10 ** ndigits)
|
|
# if number is half-way between two multiples, and the mutliple that is
|
|
# closer to zero is even, we use the (slow) pure-Python implementation
|
|
if isclose(m % 1, .5) and int(m) % 2 == 0:
|
|
if ndigits < 0:
|
|
exponent = 10 ** (-ndigits)
|
|
quotient, remainder = divmod(number, exponent)
|
|
half = exponent//2
|
|
if remainder > half or (remainder == half and quotient % 2 != 0):
|
|
quotient += 1
|
|
d = quotient * exponent
|
|
else:
|
|
exponent = _decimal.Decimal('10') ** (-ndigits) if ndigits != 0 else 1
|
|
|
|
d = _decimal.Decimal.from_float(number).quantize(
|
|
exponent, rounding=_decimal.ROUND_HALF_EVEN)
|
|
else:
|
|
# else we use the built-in round() as it produces the same results
|
|
d = round2(number, ndigits)
|
|
|
|
return totype(d)
|
|
|
|
round = round3
|
|
|
|
|
|
import logging
|
|
|
|
|
|
class _Logger(logging.Logger):
|
|
""" Add support for 'lastResort' handler introduced in Python 3.2. """
|
|
|
|
def callHandlers(self, record):
|
|
# this is the same as Python 3.5's logging.Logger.callHandlers
|
|
c = self
|
|
found = 0
|
|
while c:
|
|
for hdlr in c.handlers:
|
|
found = found + 1
|
|
if record.levelno >= hdlr.level:
|
|
hdlr.handle(record)
|
|
if not c.propagate:
|
|
c = None # break out
|
|
else:
|
|
c = c.parent
|
|
if (found == 0):
|
|
if logging.lastResort:
|
|
if record.levelno >= logging.lastResort.level:
|
|
logging.lastResort.handle(record)
|
|
elif logging.raiseExceptions and not self.manager.emittedNoHandlerWarning:
|
|
sys.stderr.write("No handlers could be found for logger"
|
|
" \"%s\"\n" % self.name)
|
|
self.manager.emittedNoHandlerWarning = True
|
|
|
|
|
|
class _StderrHandler(logging.StreamHandler):
|
|
""" This class is like a StreamHandler using sys.stderr, but always uses
|
|
whatever sys.stderr is currently set to rather than the value of
|
|
sys.stderr at handler construction time.
|
|
"""
|
|
def __init__(self, level=logging.NOTSET):
|
|
"""
|
|
Initialize the handler.
|
|
"""
|
|
logging.Handler.__init__(self, level)
|
|
|
|
@property
|
|
def stream(self):
|
|
# the try/execept avoids failures during interpreter shutdown, when
|
|
# globals are set to None
|
|
try:
|
|
return sys.stderr
|
|
except AttributeError:
|
|
return __import__('sys').stderr
|
|
|
|
|
|
if not hasattr(logging, 'lastResort'):
|
|
# for Python pre-3.2, we need to define the "last resort" handler used when
|
|
# clients don't explicitly configure logging (in Python 3.2 and above this is
|
|
# already defined). The handler prints the bare message to sys.stderr, only
|
|
# for events of severity WARNING or greater.
|
|
# To obtain the pre-3.2 behaviour, you can set logging.lastResort to None.
|
|
# https://docs.python.org/3.5/howto/logging.html#what-happens-if-no-configuration-is-provided
|
|
logging.lastResort = _StderrHandler(logging.WARNING)
|
|
# Also, we need to set the Logger class to one which supports the last resort
|
|
# handler. All new loggers instantiated after this call will use the custom
|
|
# logger class (the already existing ones, like the 'root' logger, will not)
|
|
logging.setLoggerClass(_Logger)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest, sys
|
|
sys.exit(doctest.testmod().failed)
|