fonttools/Lib/fontTools/varLib/interpolatable.py
2023-11-30 23:29:37 -05:00

1313 lines
51 KiB
Python

"""
Tool to find wrong contour order between different masters, and
other interpolatability (or lack thereof) issues.
Call as:
$ fonttools varLib.interpolatable font1 font2 ...
"""
from .interpolatableHelpers import *
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
from fontTools.pens.transformPen import TransformPen
from fontTools.pens.statisticsPen import StatisticsPen, StatisticsControlPen
from fontTools.pens.momentsPen import OpenContourError
from fontTools.varLib.models import piecewiseLinearMap, normalizeLocation
from fontTools.misc.fixedTools import floatToFixedToStr
from fontTools.misc.transform import Transform
from collections import defaultdict
from types import SimpleNamespace
from functools import wraps
from pprint import pformat
from math import sqrt, atan2, pi
import logging
log = logging.getLogger("fontTools.varLib.interpolatable")
DEFAULT_TOLERANCE = 0.95
DEFAULT_KINKINESS = 0.5
DEFAULT_KINKINESS_LENGTH = 0.002 # ratio of UPEM
DEFAULT_UPEM = 1000
class Glyph:
ITEMS = (
"recordings",
"recordingsNormalized",
"greenStats",
"controlStats",
"greenVectors",
"greenVectorsNormalized",
"controlVectors",
"nodeTypes",
"isomorphisms",
"points",
"openContours",
)
def __init__(self, glyphname, glyphset):
self.name = glyphname
for item in self.ITEMS:
setattr(self, item, [])
self._populate(glyphset)
def _fill_in(self, ix):
for item in self.ITEMS:
if len(getattr(self, item)) == ix:
getattr(self, item).append(None)
def _populate(self, glyphset):
glyph = glyphset[self.name]
self.doesnt_exist = glyph is None
if self.doesnt_exist:
return
perContourPen = PerContourOrComponentPen(RecordingPen, glyphset=glyphset)
try:
glyph.draw(perContourPen, outputImpliedClosingLine=True)
except TypeError:
glyph.draw(perContourPen)
self.recordings = perContourPen.value
del perContourPen
for ix, contour in enumerate(self.recordings):
nodeTypes = [op for op, arg in contour.value]
self.nodeTypes.append(nodeTypes)
greenStats = StatisticsPen(glyphset=glyphset)
controlStats = StatisticsControlPen(glyphset=glyphset)
try:
contour.replay(greenStats)
contour.replay(controlStats)
self.openContours.append(False)
except OpenContourError as e:
self.openContours.append(True)
self._fill_in(ix)
continue
self.greenStats.append(greenStats)
self.controlStats.append(controlStats)
self.greenVectors.append(contour_vector_from_stats(greenStats))
self.controlVectors.append(contour_vector_from_stats(controlStats))
# Save a "normalized" version of the outlines
try:
rpen = DecomposingRecordingPen(glyphset)
tpen = TransformPen(
rpen, transform_from_stats(greenStats, inverse=True)
)
contour.replay(tpen)
self.recordingsNormalized.append(rpen)
except ZeroDivisionError:
self.recordingsNormalized.append(None)
greenStats = StatisticsPen(glyphset=glyphset)
rpen.replay(greenStats)
self.greenVectorsNormalized.append(
contour_vector_from_stats(greenStats)
)
# Check starting point
if nodeTypes[0] == "addComponent":
self._fill_in(ix)
continue
assert nodeTypes[0] == "moveTo"
assert nodeTypes[-1] in ("closePath", "endPath")
points = SimpleRecordingPointPen()
converter = SegmentToPointPen(points, False)
contour.replay(converter)
# points.value is a list of pt,bool where bool is true if on-curve and false if off-curve;
# now check all rotations and mirror-rotations of the contour and build list of isomorphic
# possible starting points.
self.points.append(points.value)
isomorphisms = []
self.isomorphisms.append(isomorphisms)
# Add rotations
add_isomorphisms(points.value, isomorphisms, False)
# Add mirrored rotations
add_isomorphisms(points.value, isomorphisms, True)
def draw(self, pen, countor_idx = None):
if countor_idx is None:
for contour in self.recordings:
contour.draw(pen)
else:
self.recordings[countor_idx].draw(pen)
def test_gen(
glyphsets,
glyphs=None,
names=None,
ignore_missing=False,
*,
locations=None,
tolerance=DEFAULT_TOLERANCE,
kinkiness=DEFAULT_KINKINESS,
upem=DEFAULT_UPEM,
show_all=False,
):
if tolerance >= 10:
tolerance *= 0.01
assert 0 <= tolerance <= 1
if kinkiness >= 10:
kinkiness *= 0.01
assert 0 <= kinkiness
names = names or [repr(g) for g in glyphsets]
if glyphs is None:
# `glyphs = glyphsets[0].keys()` is faster, certainly, but doesn't allow for sparse TTFs/OTFs given out of order
# ... risks the sparse master being the first one, and only processing a subset of the glyphs
glyphs = {g for glyphset in glyphsets for g in glyphset.keys()}
parents, order = find_parents_and_order(glyphsets, locations)
def grand_parent(i, glyphname):
if i is None:
return None
i = parents[i]
if i is None:
return None
while parents[i] is not None and glyphsets[i][glyphname] is None:
i = parents[i]
return i
for glyph_name in glyphs:
log.info("Testing glyph %s", glyph_name)
allGlyphs = [Glyph(glyph_name, glyphset) for glyphset in glyphsets]
if len([1 for glyph in allGlyphs if glyph is not None]) <= 1:
continue
for master_idx, (glyph, glyphset, name) in enumerate(
zip(allGlyphs, glyphsets, names)
):
if glyph.doesnt_exist:
if not ignore_missing:
yield (
glyph_name,
{"type": "missing", "master": name, "master_idx": master_idx},
)
continue
has_open = False
for ix, open in enumerate(glyph.openContours):
if not open:
continue
has_open = True
yield (
glyph_name,
{
"master": name,
"master_idx": master_idx,
"contour": ix,
"type": "open_path",
},
)
if has_open:
continue
matchings = [None] * len(glyphsets)
for m1idx in order:
glyph1 = allGlyphs[m1idx]
if glyph1 is None or not glyph1.nodeTypes:
continue
m0idx = grand_parent(m1idx, glyph_name)
if m0idx is None:
continue
glyph0 = allGlyphs[m0idx]
if glyph0 is None or not glyph0.nodeTypes:
continue
#
# Basic compatibility checks
#
m1 = glyph0.nodeTypes
m0 = glyph1.nodeTypes
if len(m0) != len(m1):
yield (
glyph_name,
{
"type": "path_count",
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"value_1": len(m0),
"value_2": len(m1),
},
)
continue
if m0 != m1:
for pathIx, (nodes1, nodes2) in enumerate(zip(m0, m1)):
if nodes1 == nodes2:
continue
if len(nodes1) != len(nodes2):
yield (
glyph_name,
{
"type": "node_count",
"path": pathIx,
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"value_1": len(nodes1),
"value_2": len(nodes2),
},
)
continue
for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)):
if n1 != n2:
yield (
glyph_name,
{
"type": "node_incompatibility",
"path": pathIx,
"node": nodeIx,
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"value_1": n1,
"value_2": n2,
},
)
continue
#
# "contour_order" check
#
# We try matching both the StatisticsControlPen vector
# and the StatisticsPen vector.
#
# If either method found a identity matching, accept it.
# This is crucial for fonts like Kablammo[MORF].ttf and
# Nabla[EDPT,EHLT].ttf, since they really confuse the
# StatisticsPen vector because of their area=0 contours.
#
# TODO: Optimize by only computing the StatisticsPen vector
# and then checking if it is the identity vector. Only if
# not, compute the StatisticsControlPen vector and check both.
n = len(glyph0.controlVectors)
done = n <= 1
if not done:
m0Control = glyph0.controlVectors
m1Control = glyph1.controlVectors
(
matching_control,
matching_cost_control,
identity_cost_control,
) = matching_for_vectors(m0Control, m1Control)
done = matching_cost_control == identity_cost_control
if not done:
m0Green = glyph0.greenVectors
m1Green = glyph1.greenVectors
(
matching_green,
matching_cost_green,
identity_cost_green,
) = matching_for_vectors(m0Green, m1Green)
done = matching_cost_green == identity_cost_green
if not done:
# See if reversing contours in one master helps.
# That's a common problem. Then the wrong_start_point
# test will fix them.
#
# Reverse the sign of the area (0); the rest stay the same.
if not done:
m1ControlReversed = [(-m[0],) + m[1:] for m in m1Control]
(
matching_control_reversed,
matching_cost_control_reversed,
identity_cost_control_reversed,
) = matching_for_vectors(m0Control, m1ControlReversed)
done = (
matching_cost_control_reversed == identity_cost_control_reversed
)
if not done:
m1GreenReversed = [(-m[0],) + m[1:] for m in m1Green]
(
matching_control_reversed,
matching_cost_control_reversed,
identity_cost_control_reversed,
) = matching_for_vectors(m0Control, m1ControlReversed)
done = (
matching_cost_control_reversed == identity_cost_control_reversed
)
if not done:
# Otherwise, use the worst of the two matchings.
if (
matching_cost_control / identity_cost_control
< matching_cost_green / identity_cost_green
):
matching = matching_control
matching_cost = matching_cost_control
identity_cost = identity_cost_control
else:
matching = matching_green
matching_cost = matching_cost_green
identity_cost = identity_cost_green
if matching_cost < identity_cost * tolerance:
log.debug(
"matching_control_ratio %g; matching_green_ratio %g.",
matching_cost_control / identity_cost_control,
matching_cost_green / identity_cost_green,
)
this_tolerance = matching_cost / identity_cost
log.debug("tolerance: %g", this_tolerance)
yield (
glyph_name,
{
"type": "contour_order",
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"value_1": list(range(n)),
"value_2": matching,
"tolerance": this_tolerance,
},
)
matchings[m1idx] = matching
#
# "wrong_start_point" / weight check
#
m0 = glyph0.isomorphisms
m1 = glyph1.isomorphisms
m0Vectors = glyph0.greenVectors
m1Vectors = glyph1.greenVectors
m0VectorsNormalized = glyph0.greenVectorsNormalized
m1VectorsNormalized = glyph1.greenVectorsNormalized
recording0 = glyph0.recordings
recording1 = glyph1.recordings
recording0Normalized = glyph0.recordingsNormalized
recording1Normalized = glyph1.recordingsNormalized
# If contour-order is wrong, adjust it
if matchings[m1idx] is not None and m1: # m1 is empty for composite glyphs
m1 = [m1[i] for i in matchings[m1idx]]
m1Vectors = [m1Vectors[i] for i in matchings[m1idx]]
m1VectorsNormalized = [m1VectorsNormalized[i] for i in matchings[m1idx]]
recording1 = [recording1[i] for i in matchings[m1idx]]
recording1Normalized = [
recording1Normalized[i] for i in matchings[m1idx]
]
midRecording = []
for c0, c1 in zip(recording0, recording1):
try:
midRecording.append(lerp_recordings(c0, c1))
except ValueError:
# Mismatch because of the reordering above
midRecording.append(None)
for ix, (contour0, contour1) in enumerate(zip(m0, m1)):
if contour0 is None or contour1 is None or len(contour0) == 0 or len(contour0) != len(contour1):
# We already reported this; or nothing to do; or not compatible
# after reordering above.
continue
c0 = contour0[0]
# Next few lines duplicated below.
costs = [vdiff_hypot2_complex(c0[0], c1[0]) for c1 in contour1]
min_cost_idx, min_cost = min(enumerate(costs), key=lambda x: x[1])
first_cost = costs[0]
if min_cost < first_cost * tolerance:
this_tolerance = min_cost / first_cost
# c0 is the first isomorphism of the m0 master
# contour1 is list of all isomorphisms of the m1 master
#
# If the two shapes are both circle-ish and slightly
# rotated, we detect wrong start point. This is for
# example the case hundreds of times in
# RobotoSerif-Italic[GRAD,opsz,wdth,wght].ttf
#
# If the proposed point is only one off from the first
# point (and not reversed), try harder:
#
# Find the major eigenvector of the covariance matrix,
# and rotate the contours by that angle. Then find the
# closest point again. If it matches this time, let it
# pass.
proposed_point = contour1[min_cost_idx][1]
reverse = contour1[min_cost_idx][2]
num_points = len(glyph1.points[ix])
leeway = 3
okay = False
if not reverse and (
proposed_point <= leeway
or proposed_point >= num_points - leeway
):
# Try harder
# Recover the covariance matrix from the GreenVectors.
# This is a 2x2 matrix.
transforms = []
for vector in (m0Vectors[ix], m1Vectors[ix]):
meanX = vector[1]
meanY = vector[2]
stddevX = vector[3] * 0.5
stddevY = vector[4] * 0.5
correlation = vector[5] / abs(vector[0])
# https://cookierobotics.com/007/
a = stddevX * stddevX # VarianceX
c = stddevY * stddevY # VarianceY
b = correlation * stddevX * stddevY # Covariance
delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5
lambda1 = (a + c) * 0.5 + delta # Major eigenvalue
lambda2 = (a + c) * 0.5 - delta # Minor eigenvalue
theta = (
atan2(lambda1 - a, b)
if b != 0
else (pi * 0.5 if a < c else 0)
)
trans = Transform()
# Don't translate here. We are working on the complex-vector
# that includes more than just the points. It's horrible what
# we are doing anyway...
# trans = trans.translate(meanX, meanY)
trans = trans.rotate(theta)
trans = trans.scale(sqrt(lambda1), sqrt(lambda2))
transforms.append(trans)
trans = transforms[0]
new_c0 = (
[
complex(*trans.transformPoint((pt.real, pt.imag)))
for pt in c0[0]
],
) + c0[1:]
trans = transforms[1]
new_contour1 = []
for c1 in contour1:
new_c1 = (
[
complex(*trans.transformPoint((pt.real, pt.imag)))
for pt in c1[0]
],
) + c1[1:]
new_contour1.append(new_c1)
# Next few lines duplicate from above.
costs = [
vdiff_hypot2_complex(new_c0[0], new_c1[0])
for new_c1 in new_contour1
]
min_cost_idx, min_cost = min(
enumerate(costs), key=lambda x: x[1]
)
first_cost = costs[0]
if min_cost < first_cost * tolerance:
pass
# this_tolerance = min_cost / first_cost
# proposed_point = new_contour1[min_cost_idx][1]
else:
okay = True
if not okay:
yield (
glyph_name,
{
"type": "wrong_start_point",
"contour": ix,
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"value_1": 0,
"value_2": proposed_point,
"reversed": reverse,
"tolerance": this_tolerance,
},
)
else:
# Weight check.
#
# If contour could be mid-interpolated, and the two
# contours have the same area sign, proceeed.
#
# The sign difference can happen if it's a werido
# self-intersecting contour; ignore it.
contour = midRecording[ix]
normalized = False
if contour and (m0Vectors[ix][0] < 0) == (m1Vectors[ix][0] < 0):
if normalized:
midStats = StatisticsPen(glyphset=None)
tpen = TransformPen(
midStats, transform_from_stats(midStats, inverse=True)
)
contour.replay(tpen)
else:
midStats = StatisticsPen(glyphset=None)
contour.replay(midStats)
midVector = contour_vector_from_stats(midStats)
m0Vec = (
m0Vectors[ix] if not normalized else m0VectorsNormalized[ix]
)
m1Vec = (
m1Vectors[ix] if not normalized else m1VectorsNormalized[ix]
)
size0 = m0Vec[0] * m0Vec[0]
size1 = m1Vec[0] * m1Vec[0]
midSize = midVector[0] * midVector[0]
power = 1
t = tolerance**power
for overweight, problem_type in enumerate(
("underweight", "overweight")
):
if overweight:
expectedSize = sqrt(size0 * size1)
expectedSize = (size0 + size1) - expectedSize
expectedSize = size1 + (midSize - size1)
continue
else:
expectedSize = sqrt(size0 * size1)
log.debug(
"%s: actual size %g; threshold size %g, master sizes: %g, %g",
problem_type,
midSize,
expectedSize,
size0,
size1,
)
size0, size1 = sorted((size0, size1))
if (
not overweight
and expectedSize * tolerance > midSize + 1e-5
) or (
overweight and 1e-5 + expectedSize / tolerance < midSize
):
try:
if overweight:
this_tolerance = (expectedSize / midSize) ** (
1 / power
)
else:
this_tolerance = (midSize / expectedSize) ** (
1 / power
)
except ZeroDivisionError:
this_tolerance = 0
log.debug("tolerance %g", this_tolerance)
yield (
glyph_name,
{
"type": problem_type,
"contour": ix,
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"tolerance": this_tolerance,
},
)
#
# "kink" detector
#
m0 = glyph0.points
m1 = glyph1.points
# If contour-order is wrong, adjust it
if matchings[m1idx] is not None and m1: # m1 is empty for composite glyphs
m1 = [m1[i] for i in matchings[m1idx]]
t = 0.1 # ~sin(radian(6)) for tolerance 0.95
deviation_threshold = (
upem * DEFAULT_KINKINESS_LENGTH * DEFAULT_KINKINESS / kinkiness
)
for ix, (contour0, contour1) in enumerate(zip(m0, m1)):
if contour0 is None or contour1 is None or len(contour0) == 0 or len(contour0) != len(contour1):
# We already reported this; or nothing to do; or not compatible
# after reordering above.
continue
# Walk the contour, keeping track of three consecutive points, with
# middle one being an on-curve. If the three are co-linear then
# check for kinky-ness.
for i in range(len(contour0)):
pt0 = contour0[i]
pt1 = contour1[i]
if not pt0[1] or not pt1[1]:
# Skip off-curves
continue
pt0_prev = contour0[i - 1]
pt1_prev = contour1[i - 1]
pt0_next = contour0[(i + 1) % len(contour0)]
pt1_next = contour1[(i + 1) % len(contour1)]
if pt0_prev[1] and pt1_prev[1]:
# At least one off-curve is required
continue
if pt0_prev[1] and pt1_prev[1]:
# At least one off-curve is required
continue
pt0 = complex(*pt0[0])
pt1 = complex(*pt1[0])
pt0_prev = complex(*pt0_prev[0])
pt1_prev = complex(*pt1_prev[0])
pt0_next = complex(*pt0_next[0])
pt1_next = complex(*pt1_next[0])
# We have three consecutive points. Check whether
# they are colinear.
d0_prev = pt0 - pt0_prev
d0_next = pt0_next - pt0
d1_prev = pt1 - pt1_prev
d1_next = pt1_next - pt1
sin0 = d0_prev.real * d0_next.imag - d0_prev.imag * d0_next.real
sin1 = d1_prev.real * d1_next.imag - d1_prev.imag * d1_next.real
try:
sin0 /= abs(d0_prev) * abs(d0_next)
sin1 /= abs(d1_prev) * abs(d1_next)
except ZeroDivisionError:
continue
if abs(sin0) > t or abs(sin1) > t:
# Not colinear / not smooth.
continue
# Check the mid-point is actually, well, in the middle.
dot0 = d0_prev.real * d0_next.real + d0_prev.imag * d0_next.imag
dot1 = d1_prev.real * d1_next.real + d1_prev.imag * d1_next.imag
if dot0 < 0 or dot1 < 0:
# Sharp corner.
continue
# Fine, if handle ratios are similar...
r0 = abs(d0_prev) / (abs(d0_prev) + abs(d0_next))
r1 = abs(d1_prev) / (abs(d1_prev) + abs(d1_next))
r_diff = abs(r0 - r1)
if abs(r_diff) < t:
# Smooth enough.
continue
mid = (pt0 + pt1) / 2
mid_prev = (pt0_prev + pt1_prev) / 2
mid_next = (pt0_next + pt1_next) / 2
mid_d0 = mid - mid_prev
mid_d1 = mid_next - mid
sin_mid = mid_d0.real * mid_d1.imag - mid_d0.imag * mid_d1.real
try:
sin_mid /= abs(mid_d0) * abs(mid_d1)
except ZeroDivisionError:
continue
# ...or if the angles are similar.
if abs(sin_mid) * (tolerance * kinkiness) <= t:
# Smooth enough.
continue
# How visible is the kink?
cross = sin_mid * abs(mid_d0) * abs(mid_d1)
arc_len = abs(mid_d0 + mid_d1)
deviation = abs(cross / arc_len)
if deviation < deviation_threshold:
continue
deviation_ratio = deviation / arc_len
if deviation_ratio > t:
continue
this_tolerance = t / (abs(sin_mid) * kinkiness)
log.debug(
"deviation %g; deviation_ratio %g; sin_mid %g; r_diff %g",
deviation,
deviation_ratio,
sin_mid,
r_diff,
)
log.debug("tolerance %g", this_tolerance)
yield (
glyph_name,
{
"type": "kink",
"contour": ix,
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
"value": i,
"tolerance": this_tolerance,
},
)
#
# --show-all
#
if show_all:
yield (
glyph_name,
{
"type": "nothing",
"master_1": names[m0idx],
"master_2": names[m1idx],
"master_1_idx": m0idx,
"master_2_idx": m1idx,
},
)
@wraps(test_gen)
def test(*args, **kwargs):
problems = defaultdict(list)
for glyphname, problem in test_gen(*args, **kwargs):
problems[glyphname].append(problem)
return problems
def recursivelyAddGlyph(glyphname, glyphset, ttGlyphSet, glyf):
if glyphname in glyphset:
return
glyphset[glyphname] = ttGlyphSet[glyphname]
for component in getattr(glyf[glyphname], "components", []):
recursivelyAddGlyph(component.glyphName, glyphset, ttGlyphSet, glyf)
def main(args=None):
"""Test for interpolatability issues between fonts"""
import argparse
import sys
parser = argparse.ArgumentParser(
"fonttools varLib.interpolatable",
description=main.__doc__,
)
parser.add_argument(
"--glyphs",
action="store",
help="Space-separate name of glyphs to check",
)
parser.add_argument(
"--show-all",
action="store_true",
help="Show all glyph pairs, even if no problems are found",
)
parser.add_argument(
"--tolerance",
action="store",
type=float,
help="Error tolerance. Between 0 and 1. Default %s" % DEFAULT_TOLERANCE,
)
parser.add_argument(
"--kinkiness",
action="store",
type=float,
help="How aggressively report kinks. Default %s" % DEFAULT_KINKINESS,
)
parser.add_argument(
"--json",
action="store_true",
help="Output report in JSON format",
)
parser.add_argument(
"--pdf",
action="store",
help="Output report in PDF format",
)
parser.add_argument(
"--ps",
action="store",
help="Output report in PostScript format",
)
parser.add_argument(
"--html",
action="store",
help="Output report in HTML format",
)
parser.add_argument(
"--quiet",
action="store_true",
help="Only exit with code 1 or 0, no output",
)
parser.add_argument(
"--output",
action="store",
help="Output file for the problem report; Default: stdout",
)
parser.add_argument(
"--ignore-missing",
action="store_true",
help="Will not report glyphs missing from sparse masters as errors",
)
parser.add_argument(
"inputs",
metavar="FILE",
type=str,
nargs="+",
help="Input a single variable font / DesignSpace / Glyphs file, or multiple TTF/UFO files",
)
parser.add_argument(
"--name",
metavar="NAME",
type=str,
action="append",
help="Name of the master to use in the report. If not provided, all are used.",
)
parser.add_argument("-v", "--verbose", action="store_true", help="Run verbosely.")
parser.add_argument("--debug", action="store_true", help="Run with debug output.")
args = parser.parse_args(args)
from fontTools import configLogger
configLogger(level=("INFO" if args.verbose else "ERROR"))
if args.debug:
configLogger(level="DEBUG")
glyphs = args.glyphs.split() if args.glyphs else None
from os.path import basename
fonts = []
names = []
locations = []
upem = DEFAULT_UPEM
original_args_inputs = tuple(args.inputs)
if len(args.inputs) == 1:
designspace = None
if args.inputs[0].endswith(".designspace"):
from fontTools.designspaceLib import DesignSpaceDocument
designspace = DesignSpaceDocument.fromfile(args.inputs[0])
args.inputs = [master.path for master in designspace.sources]
locations = [master.location for master in designspace.sources]
axis_triples = {
a.name: (a.minimum, a.default, a.maximum) for a in designspace.axes
}
axis_mappings = {a.name: a.map for a in designspace.axes}
axis_triples = {
k: tuple(piecewiseLinearMap(v, dict(axis_mappings[k])) for v in vv)
for k, vv in axis_triples.items()
}
elif args.inputs[0].endswith(".glyphs"):
from glyphsLib import GSFont, to_designspace
gsfont = GSFont(args.inputs[0])
upem = gsfont.upm
designspace = to_designspace(gsfont)
fonts = [source.font for source in designspace.sources]
names = ["%s-%s" % (f.info.familyName, f.info.styleName) for f in fonts]
args.inputs = []
locations = [master.location for master in designspace.sources]
axis_triples = {
a.name: (a.minimum, a.default, a.maximum) for a in designspace.axes
}
axis_mappings = {a.name: a.map for a in designspace.axes}
axis_triples = {
k: tuple(piecewiseLinearMap(v, dict(axis_mappings[k])) for v in vv)
for k, vv in axis_triples.items()
}
elif args.inputs[0].endswith(".ttf"):
from fontTools.ttLib import TTFont
font = TTFont(args.inputs[0])
upem = font["head"].unitsPerEm
if "gvar" in font:
# Is variable font
axisMapping = {}
fvar = font["fvar"]
for axis in fvar.axes:
axisMapping[axis.axisTag] = {
-1: axis.minValue,
0: axis.defaultValue,
1: axis.maxValue,
}
if "avar" in font:
avar = font["avar"]
for axisTag, segments in avar.segments.items():
fvarMapping = axisMapping[axisTag].copy()
for location, value in segments.items():
axisMapping[axisTag][value] = piecewiseLinearMap(
location, fvarMapping
)
gvar = font["gvar"]
glyf = font["glyf"]
# Gather all glyphs at their "master" locations
ttGlyphSets = {}
glyphsets = defaultdict(dict)
if glyphs is None:
glyphs = sorted(gvar.variations.keys())
for glyphname in glyphs:
for var in gvar.variations[glyphname]:
locDict = {}
loc = []
for tag, val in sorted(var.axes.items()):
locDict[tag] = val[1]
loc.append((tag, val[1]))
locTuple = tuple(loc)
if locTuple not in ttGlyphSets:
ttGlyphSets[locTuple] = font.getGlyphSet(
location=locDict, normalized=True, recalcBounds=False
)
recursivelyAddGlyph(
glyphname, glyphsets[locTuple], ttGlyphSets[locTuple], glyf
)
names = ["''"]
fonts = [font.getGlyphSet()]
locations = [{}]
axis_triples = {a: (-1, 0, +1) for a in sorted(axisMapping.keys())}
for locTuple in sorted(glyphsets.keys(), key=lambda v: (len(v), v)):
name = (
"'"
+ " ".join(
"%s=%s"
% (
k,
floatToFixedToStr(
piecewiseLinearMap(v, axisMapping[k]), 14
),
)
for k, v in locTuple
)
+ "'"
)
names.append(name)
fonts.append(glyphsets[locTuple])
locations.append(dict(locTuple))
args.ignore_missing = True
args.inputs = []
if not locations:
locations = [{} for _ in fonts]
for filename in args.inputs:
if filename.endswith(".ufo"):
from fontTools.ufoLib import UFOReader
font = UFOReader(filename)
info = SimpleNamespace()
font.readInfo(info)
upem = info.unitsPerEm
fonts.append(font)
else:
from fontTools.ttLib import TTFont
font = TTFont(filename)
upem = font["head"].unitsPerEm
fonts.append(font)
names.append(basename(filename).rsplit(".", 1)[0])
glyphsets = []
for font in fonts:
if hasattr(font, "getGlyphSet"):
glyphset = font.getGlyphSet()
else:
glyphset = font
glyphsets.append({k: glyphset[k] for k in glyphset.keys()})
if args.name:
accepted_names = set(args.name)
glyphsets = [
glyphset
for name, glyphset in zip(names, glyphsets)
if name in accepted_names
]
locations = [
location
for name, location in zip(names, locations)
if name in accepted_names
]
names = [name for name in names if name in accepted_names]
if not glyphs:
glyphs = sorted(set([gn for glyphset in glyphsets for gn in glyphset.keys()]))
glyphsSet = set(glyphs)
for glyphset in glyphsets:
glyphSetGlyphNames = set(glyphset.keys())
diff = glyphsSet - glyphSetGlyphNames
if diff:
for gn in diff:
glyphset[gn] = None
# Normalize locations
locations = [normalizeLocation(loc, axis_triples) for loc in locations]
tolerance = args.tolerance or DEFAULT_TOLERANCE
kinkiness = args.kinkiness if args.kinkiness is not None else DEFAULT_KINKINESS
try:
log.info("Running on %d glyphsets", len(glyphsets))
log.info("Locations: %s", pformat(locations))
problems_gen = test_gen(
glyphsets,
glyphs=glyphs,
names=names,
locations=locations,
upem=upem,
ignore_missing=args.ignore_missing,
tolerance=tolerance,
kinkiness=kinkiness,
show_all=args.show_all,
)
problems = defaultdict(list)
f = sys.stdout if args.output is None else open(args.output, "w")
if not args.quiet:
if args.json:
import json
for glyphname, problem in problems_gen:
problems[glyphname].append(problem)
print(json.dumps(problems), file=f)
else:
last_glyphname = None
for glyphname, p in problems_gen:
problems[glyphname].append(p)
if glyphname != last_glyphname:
print(f"Glyph {glyphname} was not compatible:", file=f)
last_glyphname = glyphname
last_master_idxs = None
master_idxs = (
(p["master_idx"])
if "master_idx" in p
else (p["master_1_idx"], p["master_2_idx"])
)
if master_idxs != last_master_idxs:
master_names = (
(p["master"])
if "master" in p
else (p["master_1"], p["master_2"])
)
print(f" Masters: %s:" % ", ".join(master_names), file=f)
last_master_idxs = master_idxs
if p["type"] == "missing":
print(
" Glyph was missing in master %s" % p["master"], file=f
)
elif p["type"] == "open_path":
print(
" Glyph has an open path in master %s" % p["master"],
file=f,
)
elif p["type"] == "path_count":
print(
" Path count differs: %i in %s, %i in %s"
% (
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
),
file=f,
)
elif p["type"] == "node_count":
print(
" Node count differs in path %i: %i in %s, %i in %s"
% (
p["path"],
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
),
file=f,
)
elif p["type"] == "node_incompatibility":
print(
" Node %o incompatible in path %i: %s in %s, %s in %s"
% (
p["node"],
p["path"],
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
),
file=f,
)
elif p["type"] == "contour_order":
print(
" Contour order differs: %s in %s, %s in %s"
% (
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
),
file=f,
)
elif p["type"] == "wrong_start_point":
print(
" Contour %d start point differs: %s in %s, %s in %s; reversed: %s"
% (
p["contour"],
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
p["reversed"],
),
file=f,
)
elif p["type"] == "underweight":
print(
" Contour %d interpolation is underweight: %s, %s"
% (
p["contour"],
p["master_1"],
p["master_2"],
),
file=f,
)
elif p["type"] == "overweight":
print(
" Contour %d interpolation is overweight: %s, %s"
% (
p["contour"],
p["master_1"],
p["master_2"],
),
file=f,
)
elif p["type"] == "kink":
print(
" Contour %d has a kink at %s: %s, %s"
% (
p["contour"],
p["value"],
p["master_1"],
p["master_2"],
),
file=f,
)
elif p["type"] == "nothing":
print(
" Showing %s and %s"
% (
p["master_1"],
p["master_2"],
),
file=f,
)
else:
for glyphname, problem in problems_gen:
problems[glyphname].append(problem)
if args.pdf:
log.info("Writing PDF to %s", args.pdf)
from .interpolatablePlot import InterpolatablePDF
with InterpolatablePDF(args.pdf, glyphsets=glyphsets, names=names) as pdf:
pdf.add_title_page(
original_args_inputs, tolerance=tolerance, kinkiness=kinkiness
)
pdf.add_problems(problems)
if not problems and not args.quiet:
pdf.draw_cupcake()
if args.ps:
log.info("Writing PS to %s", args.pdf)
from .interpolatablePlot import InterpolatablePS
with InterpolatablePS(args.ps, glyphsets=glyphsets, names=names) as ps:
ps.add_title_page(
original_args_inputs, tolerance=tolerance, kinkiness=kinkiness
)
ps.add_problems(problems)
if not problems and not args.quiet:
ps.draw_cupcake()
if args.html:
log.info("Writing HTML to %s", args.html)
from .interpolatablePlot import InterpolatableSVG
svgs = []
glyph_starts = {}
with InterpolatableSVG(svgs, glyphsets=glyphsets, names=names) as svg:
svg.add_title_page(
original_args_inputs,
show_tolerance=False,
tolerance=tolerance,
kinkiness=kinkiness,
)
for glyph, glyph_problems in problems.items():
glyph_starts[len(svgs)] = glyph
svg.add_problems(
{glyph: glyph_problems},
show_tolerance=False,
show_page_number=False,
)
if not problems and not args.quiet:
svg.draw_cupcake()
import base64
with open(args.html, "wb") as f:
f.write(b"<!DOCTYPE html>\n")
f.write(
b'<html><body align="center" style="font-family: sans-serif; text-color: #222">\n'
)
f.write(b"<title>fonttools varLib.interpolatable report</title>\n")
for i, svg in enumerate(svgs):
if i in glyph_starts:
f.write(f"<h1>Glyph {glyph_starts[i]}</h1>\n".encode("utf-8"))
f.write("<img src='data:image/svg+xml;base64,".encode("utf-8"))
f.write(base64.b64encode(svg))
f.write(b"' />\n")
f.write(b"<hr>\n")
f.write(b"</body></html>\n")
except Exception as e:
e.args += original_args_inputs
log.error(e)
raise
if problems:
return problems
if __name__ == "__main__":
import sys
problems = main()
sys.exit(int(bool(problems)))