fonttools/Lib/fontTools/varLib/interpolatablePlot.py

1188 lines
40 KiB
Python

from fontTools.ttLib import TTFont
from fontTools.pens.recordingPen import (
RecordingPen,
DecomposingRecordingPen,
RecordingPointPen,
)
from fontTools.pens.boundsPen import ControlBoundsPen
from fontTools.pens.cairoPen import CairoPen
from fontTools.pens.pointPen import (
SegmentToPointPen,
PointToSegmentPen,
ReverseContourPointPen,
)
from fontTools.varLib.interpolatable import (
PerContourOrComponentPen,
SimpleRecordingPointPen,
)
from itertools import cycle
from functools import wraps
from io import BytesIO
import cairo
import math
import os
import logging
log = logging.getLogger("fontTools.varLib.interpolatable")
class LerpGlyphSet:
def __init__(self, glyphset1, glyphset2, factor=0.5):
self.glyphset1 = glyphset1
self.glyphset2 = glyphset2
self.factor = factor
def __getitem__(self, glyphname):
return LerpGlyph(glyphname, self)
class LerpGlyph:
def __init__(self, glyphname, glyphset):
self.glyphset = glyphset
self.glyphname = glyphname
def draw(self, pen):
recording1 = DecomposingRecordingPen(self.glyphset.glyphset1)
self.glyphset.glyphset1[self.glyphname].draw(recording1)
recording2 = DecomposingRecordingPen(self.glyphset.glyphset2)
self.glyphset.glyphset2[self.glyphname].draw(recording2)
factor = self.glyphset.factor
for (op1, args1), (op2, args2) in zip(recording1.value, recording2.value):
if op1 != op2:
raise ValueError("Mismatching operations: %s, %s" % (op1, op2))
mid_args = [
(x1 + (x2 - x1) * factor, y1 + (y2 - y1) * factor)
for (x1, y1), (x2, y2) in zip(args1, args2)
]
getattr(pen, op1)(*mid_args)
class OverridingDict(dict):
def __init__(self, parent_dict):
self.parent_dict = parent_dict
def __missing__(self, key):
return self.parent_dict[key]
class InterpolatablePlot:
width = 640
height = 480
pad = 16
line_height = 36
page_number = 1
head_color = (0.3, 0.3, 0.3)
label_color = (0.2, 0.2, 0.2)
border_color = (0.9, 0.9, 0.9)
border_width = 1
fill_color = (0.8, 0.8, 0.8)
stroke_color = (0.1, 0.1, 0.1)
stroke_width = 2
oncurve_node_color = (0, 0.8, 0, 0.7)
oncurve_node_diameter = 10
offcurve_node_color = (0, 0.5, 0, 0.7)
offcurve_node_diameter = 8
handle_color = (0.2, 1, 0.2, 0.5)
handle_width = 1
corrected_start_point_color = (0, 0.9, 0, 0.7)
corrected_start_point_size = 15
wrong_start_point_color = (1, 0, 0, 0.7)
start_point_color = (0, 0, 1, 0.7)
start_arrow_length = 20
kink_point_size = 10
kink_point_color = (1, 0, 1, 0.7)
kink_circle_size = 25
kink_circle_stroke_width = 1.5
kink_circle_color = (1, 0, 1, 0.7)
contour_colors = ((1, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1))
contour_alpha = 0.5
weight_issue_contour_color = (0, 0, 0, 0.4)
no_issues_label = "Your font's good! Have a cupcake..."
no_issues_label_color = (0, 0.5, 0)
cupcake_color = (0.3, 0, 0.3)
cupcake = r"""
,@.
,@.@@,.
,@@,.@@@. @.@@@,.
,@@. @@@. @@. @@,.
,@@@.@,.@. @. @@@@,.@.@@,.
,@@.@. @@.@@. @,. .@' @' @@,
,@@. @. .@@.@@@. @@' @,
,@. @@. @,
@. @,@@,. , .@@,
@,. .@,@@,. .@@,. , .@@, @, @,
@. .@. @ @@,. , @
@,.@@. @,. @@,. @. @,. @'
@@||@,. @'@,. @@,. @@ @,. @'@@, @'
\\@@@@' @,. @'@@@@' @@,. @@@' //@@@'
|||||||| @@,. @@' ||||||| |@@@|@|| ||
\\\\\\\ ||@@@|| ||||||| ||||||| //
||||||| |||||| |||||| |||||| ||
\\\\\\ |||||| |||||| |||||| //
|||||| ||||| ||||| ||||| ||
\\\\\ ||||| ||||| ||||| //
||||| |||| ||||| |||| ||
\\\\ |||| |||| |||| //
||||||||||||||||||||||||
"""
emoticon_color = (0, 0.3, 0.3)
shrug = r"""\_(")_/"""
underweight = r"""
o
/|\
/ \
"""
overweight = r"""
o
/O\
/ \
"""
def __init__(self, out, glyphsets, names=None, **kwargs):
self.out = out
self.glyphsets = glyphsets
self.names = names or [repr(g) for g in glyphsets]
for k, v in kwargs.items():
if not hasattr(self, k):
raise TypeError("Unknown keyword argument: %s" % k)
setattr(self, k, v)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
pass
def set_size(self, width, height):
raise NotImplementedError
def show_page(self):
self.page_number += 1
def total_width(self):
return self.width * 2 + self.pad * 3
def total_height(self):
return (
self.pad
+ self.line_height
+ self.pad
+ self.line_height
+ self.pad
+ 2 * (self.height + self.pad * 2 + self.line_height)
+ self.pad
)
def add_title_page(
self, files, *, show_tolerance=True, tolerance=None, kinkiness=None
):
self.set_size(self.total_width(), self.total_height())
pad = self.pad
width = self.total_width() - 3 * self.pad
height = self.total_height() - 2 * self.pad
x = y = pad
self.draw_label("Problem report for:", x=x, y=y, bold=True, width=width)
y += self.line_height
import hashlib
for file in files:
base_file = os.path.basename(file)
y += self.line_height
self.draw_label(base_file, x=x, y=y, bold=True, width=width)
y += self.line_height
h = hashlib.sha1(open(file, "rb").read()).hexdigest()
self.draw_label("sha1: %s" % h, x=x + pad, y=y, width=width)
y += self.line_height
if file.endswith(".ttf"):
ttFont = TTFont(file)
name = ttFont["name"] if "name" in ttFont else None
if name:
for what, nameIDs in (
("Family name", (21, 16, 1)),
("Version", (5,)),
):
n = name.getFirstDebugName(nameIDs)
if n is None:
continue
self.draw_label(
"%s: %s" % (what, n), x=x + pad, y=y, width=width
)
y += self.line_height
elif file.endswith(".glyphs"):
from glyphsLib import GSFont
f = GSFont(file)
for what, field in (
("Family name", "familyName"),
("VersionMajor", "versionMajor"),
("VersionMinor", "_versionMinor"),
):
self.draw_label(
"%s: %s" % (what, getattr(f, field)),
x=x + pad,
y=y,
width=width,
)
y += self.line_height
self.draw_legend(
show_tolerance=show_tolerance, tolerance=tolerance, kinkiness=kinkiness
)
self.show_page()
def draw_legend(self, *, show_tolerance=True, tolerance=None, kinkiness=None):
cr = cairo.Context(self.surface)
x = self.pad
y = self.total_height() - self.pad - self.line_height * 2
width = self.total_width() - 2 * self.pad
xx = x + self.pad * 2
xxx = x + self.pad * 4
if show_tolerance:
self.draw_label(
"Tolerance: badness; closer to zero the worse", x=xxx, y=y, width=width
)
y -= self.pad + self.line_height
self.draw_label("Underweight contours", x=xxx, y=y, width=width)
cr.rectangle(xx - self.pad * 0.7, y, 1.5 * self.pad, self.line_height)
cr.set_source_rgb(*self.fill_color)
cr.fill_preserve()
cr.set_source_rgb(*self.stroke_color)
cr.set_line_width(self.stroke_width)
cr.stroke_preserve()
cr.set_source_rgba(*self.weight_issue_contour_color)
cr.fill()
y -= self.pad + self.line_height
self.draw_label(
"Colored contours: contours with the wrong order", x=xxx, y=y, width=width
)
cr.rectangle(xx - self.pad * 0.7, y, 1.5 * self.pad, self.line_height)
cr.set_source_rgb(*self.fill_color)
cr.fill_preserve()
cr.set_source_rgb(*self.stroke_color)
cr.set_line_width(self.stroke_width)
cr.stroke_preserve()
cr.set_source_rgba(*self.contour_colors[0], self.contour_alpha)
cr.fill()
y -= self.pad + self.line_height
self.draw_label("Kink artifact", x=xxx, y=y, width=width)
self.draw_circle(
cr,
x=xx,
y=y + self.line_height * 0.5,
diameter=self.kink_circle_size,
stroke_width=self.kink_circle_stroke_width,
color=self.kink_circle_color,
)
y -= self.pad + self.line_height
self.draw_label("Point causing kink in the contour", x=xxx, y=y, width=width)
self.draw_dot(
cr,
x=xx,
y=y + self.line_height * 0.5,
diameter=self.kink_point_size,
color=self.kink_point_color,
)
y -= self.pad + self.line_height
self.draw_label("Suggested new contour start point", x=xxx, y=y, width=width)
self.draw_dot(
cr,
x=xx,
y=y + self.line_height * 0.5,
diameter=self.corrected_start_point_size,
color=self.corrected_start_point_color,
)
y -= self.pad + self.line_height
self.draw_label(
"Contour start point in contours with wrong direction",
x=xxx,
y=y,
width=width,
)
self.draw_arrow(
cr,
x=xx - self.start_arrow_length * 0.3,
y=y + self.line_height * 0.5,
color=self.wrong_start_point_color,
)
y -= self.pad + self.line_height
self.draw_label(
"Contour start point when the first two points overlap",
x=xxx,
y=y,
width=width,
)
self.draw_dot(
cr,
x=xx,
y=y + self.line_height * 0.5,
diameter=self.corrected_start_point_size,
color=self.start_point_color,
)
y -= self.pad + self.line_height
self.draw_label("Contour start point and direction", x=xxx, y=y, width=width)
self.draw_arrow(
cr,
x=xx - self.start_arrow_length * 0.3,
y=y + self.line_height * 0.5,
color=self.start_point_color,
)
y -= self.pad + self.line_height
self.draw_label("Legend:", x=x, y=y, width=width, bold=True)
y -= self.pad + self.line_height
if kinkiness is not None:
self.draw_label(
"Kink-reporting aggressiveness: %g" % kinkiness,
x=xxx,
y=y,
width=width,
)
y -= self.pad + self.line_height
if tolerance is not None:
self.draw_label(
"Error tolerance: %g" % tolerance,
x=xxx,
y=y,
width=width,
)
y -= self.pad + self.line_height
self.draw_label("Parameters:", x=x, y=y, width=width, bold=True)
y -= self.pad + self.line_height
def add_problems(self, problems, *, show_tolerance=True, show_page_number=True):
for glyph, glyph_problems in problems.items():
last_masters = None
current_glyph_problems = []
for p in glyph_problems:
masters = (
p["master_idx"]
if "master_idx" in p
else (p["master_1_idx"], p["master_2_idx"])
)
if masters == last_masters:
current_glyph_problems.append(p)
continue
# Flush
if current_glyph_problems:
self.add_problem(
glyph,
current_glyph_problems,
show_tolerance=show_tolerance,
show_page_number=show_page_number,
)
self.show_page()
current_glyph_problems = []
last_masters = masters
current_glyph_problems.append(p)
if current_glyph_problems:
self.add_problem(
glyph,
current_glyph_problems,
show_tolerance=show_tolerance,
show_page_number=show_page_number,
)
self.show_page()
def add_problem(
self, glyphname, problems, *, show_tolerance=True, show_page_number=True
):
if type(problems) not in (list, tuple):
problems = [problems]
problem_type = problems[0]["type"]
problem_types = set(problem["type"] for problem in problems)
if not all(pt == problem_type for pt in problem_types):
problem_type = ", ".join(sorted({problem["type"] for problem in problems}))
log.info("Drawing %s: %s", glyphname, problem_type)
master_keys = (
("master_idx",)
if "master_idx" in problems[0]
else ("master_1_idx", "master_2_idx")
)
master_indices = [problems[0][k] for k in master_keys]
if problem_type == "missing":
sample_glyph = next(
i for i, m in enumerate(self.glyphsets) if m[glyphname] is not None
)
master_indices.insert(0, sample_glyph)
self.set_size(self.total_width(), self.total_height())
x = self.pad
y = self.pad
self.draw_label(
"Glyph name: " + glyphname,
x=x,
y=y,
color=self.head_color,
align=0,
bold=True,
)
tolerance = min(p.get("tolerance", 1) for p in problems)
if tolerance < 1 and show_tolerance:
self.draw_label(
"tolerance: %.2f" % tolerance,
x=x,
y=y,
width=self.total_width() - 2 * self.pad,
align=1,
bold=True,
)
y += self.line_height + self.pad
self.draw_label(
problem_type,
x=x,
y=y,
width=self.total_width() - 2 * self.pad,
color=self.head_color,
align=0.5,
bold=True,
)
y += self.line_height + self.pad
scales = []
for which, master_idx in enumerate(master_indices):
glyphset = self.glyphsets[master_idx]
name = self.names[master_idx]
self.draw_label(name, x=x, y=y, color=self.label_color, align=0.5)
y += self.line_height + self.pad
if glyphset[glyphname] is not None:
scales.append(
self.draw_glyph(glyphset, glyphname, problems, which, x=x, y=y)
)
else:
self.draw_emoticon(self.shrug, x=x, y=y)
y += self.height + self.pad
if any(
pt
in (
"nothing",
"wrong_start_point",
"contour_order",
"kink",
"underweight",
"overweight",
)
for pt in problem_types
):
x = self.pad + self.width + self.pad
y = self.pad
y += self.line_height + self.pad
y += self.line_height + self.pad
glyphset1 = self.glyphsets[master_indices[0]]
glyphset2 = self.glyphsets[master_indices[1]]
# Draw the mid-way of the two masters
self.draw_label(
"midway interpolation", x=x, y=y, color=self.head_color, align=0.5
)
y += self.line_height + self.pad
midway_glyphset = LerpGlyphSet(glyphset1, glyphset2)
self.draw_glyph(
midway_glyphset,
glyphname,
[{"type": "midway"}]
+ [
p
for p in problems
if p["type"] in ("kink", "underweight", "overweight")
],
None,
x=x,
y=y,
scale=min(scales),
)
y += self.height + self.pad
if any(
pt
in (
"nothing",
"wrong_start_point",
"contour_order",
"kink",
)
for pt in problem_types
):
# Draw the proposed fix
self.draw_label("proposed fix", x=x, y=y, color=self.head_color, align=0.5)
y += self.line_height + self.pad
overriding1 = OverridingDict(glyphset1)
overriding2 = OverridingDict(glyphset2)
perContourPen1 = PerContourOrComponentPen(
RecordingPen, glyphset=overriding1
)
perContourPen2 = PerContourOrComponentPen(
RecordingPen, glyphset=overriding2
)
glyphset1[glyphname].draw(perContourPen1)
glyphset2[glyphname].draw(perContourPen2)
for problem in problems:
if problem["type"] == "contour_order":
fixed_contours = [
perContourPen2.value[i] for i in problems[0]["value_2"]
]
perContourPen2.value = fixed_contours
for problem in problems:
if problem["type"] == "wrong_start_point":
# Save the wrong contours
wrongContour1 = perContourPen1.value[problem["contour"]]
wrongContour2 = perContourPen2.value[problem["contour"]]
# Convert the wrong contours to point pens
points1 = RecordingPointPen()
converter = SegmentToPointPen(points1, False)
wrongContour1.replay(converter)
points2 = RecordingPointPen()
converter = SegmentToPointPen(points2, False)
wrongContour2.replay(converter)
proposed_start = problem["value_2"]
# See if we need reversing; fragile but worth a try
if problem["reversed"]:
new_points2 = RecordingPointPen()
reversedPen = ReverseContourPointPen(new_points2)
points2.replay(reversedPen)
points2 = new_points2
proposed_start = len(points2.value) - 2 - proposed_start
# Rotate points2 so that the first point is the same as in points1
beginPath = points2.value[:1]
endPath = points2.value[-1:]
pts = points2.value[1:-1]
pts = pts[proposed_start:] + pts[:proposed_start]
points2.value = beginPath + pts + endPath
# Convert the point pens back to segment pens
segment1 = RecordingPen()
converter = PointToSegmentPen(segment1, True)
points1.replay(converter)
segment2 = RecordingPen()
converter = PointToSegmentPen(segment2, True)
points2.replay(converter)
# Replace the wrong contours
wrongContour1.value = segment1.value
wrongContour2.value = segment2.value
perContourPen1.value[problem["contour"]] = wrongContour1
perContourPen2.value[problem["contour"]] = wrongContour2
for problem in problems:
# If we have a kink, try to fix it.
if problem["type"] == "kink":
# Save the wrong contours
wrongContour1 = perContourPen1.value[problem["contour"]]
wrongContour2 = perContourPen2.value[problem["contour"]]
# Convert the wrong contours to point pens
points1 = RecordingPointPen()
converter = SegmentToPointPen(points1, False)
wrongContour1.replay(converter)
points2 = RecordingPointPen()
converter = SegmentToPointPen(points2, False)
wrongContour2.replay(converter)
i = problem["value"]
# Position points to be around the same ratio
# beginPath / endPath dance
j = i + 1
pt0 = points1.value[j][1][0]
pt1 = points2.value[j][1][0]
j_prev = (i - 1) % (len(points1.value) - 2) + 1
pt0_prev = points1.value[j_prev][1][0]
pt1_prev = points2.value[j_prev][1][0]
j_next = (i + 1) % (len(points1.value) - 2) + 1
pt0_next = points1.value[j_next][1][0]
pt1_next = points2.value[j_next][1][0]
pt0 = complex(*pt0)
pt1 = complex(*pt1)
pt0_prev = complex(*pt0_prev)
pt1_prev = complex(*pt1_prev)
pt0_next = complex(*pt0_next)
pt1_next = complex(*pt1_next)
# Find the ratio of the distance between the points
r0 = abs(pt0 - pt0_prev) / abs(pt0_next - pt0_prev)
r1 = abs(pt1 - pt1_prev) / abs(pt1_next - pt1_prev)
r_mid = (r0 + r1) / 2
pt0 = pt0_prev + r_mid * (pt0_next - pt0_prev)
pt1 = pt1_prev + r_mid * (pt1_next - pt1_prev)
points1.value[j] = (
points1.value[j][0],
(((pt0.real, pt0.imag),) + points1.value[j][1][1:]),
points1.value[j][2],
)
points2.value[j] = (
points2.value[j][0],
(((pt1.real, pt1.imag),) + points2.value[j][1][1:]),
points2.value[j][2],
)
# Convert the point pens back to segment pens
segment1 = RecordingPen()
converter = PointToSegmentPen(segment1, True)
points1.replay(converter)
segment2 = RecordingPen()
converter = PointToSegmentPen(segment2, True)
points2.replay(converter)
# Replace the wrong contours
wrongContour1.value = segment1.value
wrongContour2.value = segment2.value
# Assemble
fixed1 = RecordingPen()
fixed2 = RecordingPen()
for contour in perContourPen1.value:
fixed1.value.extend(contour.value)
for contour in perContourPen2.value:
fixed2.value.extend(contour.value)
fixed1.draw = fixed1.replay
fixed2.draw = fixed2.replay
overriding1[glyphname] = fixed1
overriding2[glyphname] = fixed2
try:
midway_glyphset = LerpGlyphSet(overriding1, overriding2)
self.draw_glyph(
midway_glyphset,
glyphname,
{"type": "fixed"},
None,
x=x,
y=y,
scale=min(scales),
)
except ValueError:
self.draw_emoticon(self.shrug, x=x, y=y)
y += self.height + self.pad
else:
emoticon = self.shrug
if "underweight" in problem_types:
emoticon = self.underweight
elif "overweight" in problem_types:
emoticon = self.overweight
self.draw_emoticon(emoticon, x=x, y=y)
if show_page_number:
self.draw_label(
str(self.page_number),
x=0,
y=self.total_height() - self.line_height,
width=self.total_width(),
color=self.head_color,
align=0.5,
)
def draw_label(
self,
label,
*,
x=0,
y=0,
color=(0, 0, 0),
align=0,
bold=False,
width=None,
height=None,
):
if width is None:
width = self.width
if height is None:
height = self.height
cr = cairo.Context(self.surface)
cr.select_font_face(
"@cairo:",
cairo.FONT_SLANT_NORMAL,
cairo.FONT_WEIGHT_BOLD if bold else cairo.FONT_WEIGHT_NORMAL,
)
cr.set_font_size(self.line_height)
font_extents = cr.font_extents()
font_size = self.line_height * self.line_height / font_extents[2]
cr.set_font_size(font_size)
font_extents = cr.font_extents()
cr.set_source_rgb(*color)
extents = cr.text_extents(label)
if extents.width > width:
# Shrink
font_size *= width / extents.width
cr.set_font_size(font_size)
font_extents = cr.font_extents()
extents = cr.text_extents(label)
# Center
label_x = x + (width - extents.width) * align
label_y = y + font_extents[0]
cr.move_to(label_x, label_y)
cr.show_text(label)
def draw_glyph(self, glyphset, glyphname, problems, which, *, x=0, y=0, scale=None):
if type(problems) not in (list, tuple):
problems = [problems]
midway = any(problem["type"] == "midway" for problem in problems)
problem_type = problems[0]["type"]
problem_types = set(problem["type"] for problem in problems)
if not all(pt == problem_type for pt in problem_types):
problem_type = "mixed"
glyph = glyphset[glyphname]
recording = RecordingPen()
glyph.draw(recording)
decomposedRecording = DecomposingRecordingPen(glyphset)
glyph.draw(decomposedRecording)
boundsPen = ControlBoundsPen(glyphset)
decomposedRecording.replay(boundsPen)
bounds = boundsPen.bounds
if bounds is None:
bounds = (0, 0, 0, 0)
glyph_width = bounds[2] - bounds[0]
glyph_height = bounds[3] - bounds[1]
if glyph_width:
if scale is None:
scale = self.width / glyph_width
else:
scale = min(scale, self.height / glyph_height)
if glyph_height:
if scale is None:
scale = self.height / glyph_height
else:
scale = min(scale, self.height / glyph_height)
if scale is None:
scale = 1
cr = cairo.Context(self.surface)
cr.translate(x, y)
# Center
cr.translate(
(self.width - glyph_width * scale) / 2,
(self.height - glyph_height * scale) / 2,
)
cr.scale(scale, -scale)
cr.translate(-bounds[0], -bounds[3])
if self.border_color:
cr.set_source_rgb(*self.border_color)
cr.rectangle(bounds[0], bounds[1], glyph_width, glyph_height)
cr.set_line_width(self.border_width / scale)
cr.stroke()
if self.fill_color or self.stroke_color:
pen = CairoPen(glyphset, cr)
decomposedRecording.replay(pen)
if self.fill_color and problem_type != "open_path":
cr.set_source_rgb(*self.fill_color)
cr.fill_preserve()
if self.stroke_color:
cr.set_source_rgb(*self.stroke_color)
cr.set_line_width(self.stroke_width / scale)
cr.stroke_preserve()
cr.new_path()
if "underweight" in problem_types or "overweight" in problem_types:
perContourPen = PerContourOrComponentPen(RecordingPen, glyphset=glyphset)
recording.replay(perContourPen)
for problem in problems:
if problem["type"] in ("underweight", "overweight"):
contour = perContourPen.value[problem["contour"]]
contour.replay(CairoPen(glyphset, cr))
cr.set_source_rgba(*self.weight_issue_contour_color)
cr.fill()
if any(
t in problem_types
for t in {
"nothing",
"node_count",
"node_incompatibility",
}
):
cr.set_line_cap(cairo.LINE_CAP_ROUND)
# Oncurve nodes
for segment, args in decomposedRecording.value:
if not args:
continue
x, y = args[-1]
cr.move_to(x, y)
cr.line_to(x, y)
cr.set_source_rgba(*self.oncurve_node_color)
cr.set_line_width(self.oncurve_node_diameter / scale)
cr.stroke()
# Offcurve nodes
for segment, args in decomposedRecording.value:
if not args:
continue
for x, y in args[:-1]:
cr.move_to(x, y)
cr.line_to(x, y)
cr.set_source_rgba(*self.offcurve_node_color)
cr.set_line_width(self.offcurve_node_diameter / scale)
cr.stroke()
# Handles
for segment, args in decomposedRecording.value:
if not args:
pass
elif segment in ("moveTo", "lineTo"):
cr.move_to(*args[0])
elif segment == "qCurveTo":
for x, y in args:
cr.line_to(x, y)
cr.new_sub_path()
cr.move_to(*args[-1])
elif segment == "curveTo":
cr.line_to(*args[0])
cr.new_sub_path()
cr.move_to(*args[1])
cr.line_to(*args[2])
cr.new_sub_path()
cr.move_to(*args[-1])
else:
continue
cr.set_source_rgba(*self.handle_color)
cr.set_line_width(self.handle_width / scale)
cr.stroke()
matching = None
for problem in problems:
if problem["type"] == "contour_order":
matching = problem["value_2"]
colors = cycle(self.contour_colors)
perContourPen = PerContourOrComponentPen(
RecordingPen, glyphset=glyphset
)
recording.replay(perContourPen)
for i, contour in enumerate(perContourPen.value):
if matching[i] == i:
continue
color = next(colors)
contour.replay(CairoPen(glyphset, cr))
cr.set_source_rgba(*color, self.contour_alpha)
cr.fill()
for problem in problems:
if problem["type"] in ("nothing", "wrong_start_point"):
idx = problem.get("contour")
# Draw suggested point
if idx is not None and which == 1 and "value_2" in problem:
perContourPen = PerContourOrComponentPen(
RecordingPen, glyphset=glyphset
)
decomposedRecording.replay(perContourPen)
points = SimpleRecordingPointPen()
converter = SegmentToPointPen(points, False)
perContourPen.value[
idx if matching is None else matching[idx]
].replay(converter)
targetPoint = points.value[problem["value_2"]][0]
cr.save()
cr.translate(*targetPoint)
cr.scale(1 / scale, 1 / scale)
self.draw_dot(
cr,
diameter=self.corrected_start_point_size,
color=self.corrected_start_point_color,
)
cr.restore()
# Draw start-point arrow
if which == 0 or not problem.get("reversed"):
color = self.start_point_color
else:
color = self.wrong_start_point_color
first_pt = None
i = 0
cr.save()
for segment, args in decomposedRecording.value:
if segment == "moveTo":
first_pt = args[0]
continue
if first_pt is None:
continue
second_pt = args[0]
if idx is None or i == idx:
cr.save()
first_pt = complex(*first_pt)
second_pt = complex(*second_pt)
length = abs(second_pt - first_pt)
cr.translate(first_pt.real, first_pt.imag)
if length:
# Draw arrowhead
cr.rotate(
math.atan2(
second_pt.imag - first_pt.imag,
second_pt.real - first_pt.real,
)
)
cr.scale(1 / scale, 1 / scale)
self.draw_arrow(cr, color=color)
else:
# Draw circle
cr.scale(1 / scale, 1 / scale)
self.draw_dot(
cr,
diameter=self.corrected_start_point_size,
color=color,
)
cr.restore()
if idx is not None:
break
first_pt = None
i += 1
cr.restore()
if problem["type"] == "kink":
idx = problem.get("contour")
perContourPen = PerContourOrComponentPen(
RecordingPen, glyphset=glyphset
)
decomposedRecording.replay(perContourPen)
points = SimpleRecordingPointPen()
converter = SegmentToPointPen(points, False)
perContourPen.value[idx if matching is None else matching[idx]].replay(
converter
)
targetPoint = points.value[problem["value"]][0]
cr.save()
cr.translate(*targetPoint)
cr.scale(1 / scale, 1 / scale)
if midway:
self.draw_circle(
cr,
diameter=self.kink_circle_size,
stroke_width=self.kink_circle_stroke_width,
color=self.kink_circle_color,
)
else:
self.draw_dot(
cr,
diameter=self.kink_point_size,
color=self.kink_point_color,
)
cr.restore()
return scale
def draw_dot(self, cr, *, x=0, y=0, color=(0, 0, 0), diameter=10):
cr.save()
cr.set_line_width(diameter)
cr.set_line_cap(cairo.LINE_CAP_ROUND)
cr.move_to(x, y)
cr.line_to(x, y)
if len(color) == 3:
color = color + (1,)
cr.set_source_rgba(*color)
cr.stroke()
cr.restore()
def draw_circle(
self, cr, *, x=0, y=0, color=(0, 0, 0), diameter=10, stroke_width=1
):
cr.save()
cr.set_line_width(stroke_width)
cr.set_line_cap(cairo.LINE_CAP_SQUARE)
cr.arc(x, y, diameter / 2, 0, 2 * math.pi)
if len(color) == 3:
color = color + (1,)
cr.set_source_rgba(*color)
cr.stroke()
cr.restore()
def draw_arrow(self, cr, *, x=0, y=0, color=(0, 0, 0)):
cr.save()
if len(color) == 3:
color = color + (1,)
cr.set_source_rgba(*color)
cr.translate(self.start_arrow_length + x, y)
cr.move_to(0, 0)
cr.line_to(
-self.start_arrow_length,
-self.start_arrow_length * 0.4,
)
cr.line_to(
-self.start_arrow_length,
self.start_arrow_length * 0.4,
)
cr.close_path()
cr.fill()
cr.restore()
def draw_text(self, text, *, x=0, y=0, color=(0, 0, 0), width=None, height=None):
if width is None:
width = self.width
if height is None:
height = self.height
text = text.splitlines()
cr = cairo.Context(self.surface)
cr.set_source_rgb(*color)
cr.set_font_size(self.line_height)
cr.select_font_face(
"@cairo:monospace", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL
)
text_width = 0
text_height = 0
font_extents = cr.font_extents()
font_line_height = font_extents[2]
font_ascent = font_extents[0]
for line in text:
extents = cr.text_extents(line)
text_width = max(text_width, extents.width)
text_height += font_line_height
if not text_width:
return
cr.translate(x, y)
scale = min(width / text_width, height / text_height)
# center
cr.translate(
(width - text_width * scale) / 2, (height - text_height * scale) / 2
)
cr.scale(scale, scale)
cr.translate(0, font_ascent)
for line in text:
cr.move_to(0, 0)
cr.show_text(line)
cr.translate(0, font_line_height)
def draw_cupcake(self):
self.set_size(self.total_width(), self.total_height())
self.draw_label(
self.no_issues_label,
x=self.pad,
y=self.pad,
color=self.no_issues_label_color,
width=self.total_width() - 2 * self.pad,
align=0.5,
bold=True,
)
self.draw_text(
self.cupcake,
x=self.pad,
y=self.pad + self.line_height,
width=self.total_width() - 2 * self.pad,
height=self.total_height() - 2 * self.pad - self.line_height,
color=self.cupcake_color,
)
def draw_emoticon(self, emoticon, x=0, y=0):
self.draw_text(emoticon, x=x, y=y, color=self.emoticon_color)
class InterpolatablePostscriptLike(InterpolatablePlot):
@wraps(InterpolatablePlot.__init__)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __exit__(self, type, value, traceback):
self.surface.finish()
def set_size(self, width, height):
self.surface.set_size(width, height)
def show_page(self):
super().show_page()
self.surface.show_page()
class InterpolatablePS(InterpolatablePostscriptLike):
def __enter__(self):
self.surface = cairo.PSSurface(self.out, self.width, self.height)
return self
class InterpolatablePDF(InterpolatablePostscriptLike):
def __enter__(self):
self.surface = cairo.PDFSurface(self.out, self.width, self.height)
self.surface.set_metadata(
cairo.PDF_METADATA_CREATOR, "fonttools varLib.interpolatable"
)
self.surface.set_metadata(cairo.PDF_METADATA_CREATE_DATE, "")
return self
class InterpolatableSVG(InterpolatablePlot):
@wraps(InterpolatablePlot.__init__)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __enter__(self):
self.surface = None
return self
def __exit__(self, type, value, traceback):
if self.surface is not None:
self.show_page()
def set_size(self, width, height):
self.sink = BytesIO()
self.surface = cairo.SVGSurface(self.sink, width, height)
def show_page(self):
super().show_page()
self.surface.finish()
self.out.append(self.sink.getvalue())
self.surface = None