fonttools/Lib/cu2qu/__init__.py
James Godfrey-Kittle e5cf42545b Variable names
In some cases these changes were made for clarity, in some cases more
just for consistency. Anyways we should now have mostly consistent and
reasonably clear variable names everywhere.
2016-07-28 11:56:14 -07:00

236 lines
7.4 KiB
Python

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division, absolute_import
__all__ = ['curve_to_quadratic', 'curves_to_quadratic']
MAX_N = 100
def calc_cubic_points(a, b, c, d):
_1 = d
_2 = (c / 3.0) + d
_3 = (b + c) / 3.0 + _2
_4 = a + d + c + b
return _1, _2, _3, _4
def calc_cubic_parameters(p0, p1, p2, p3):
c = (p1 - p0) * 3.0
b = (p2 - p1) * 3.0 - c
d = p0
a = p3 - d - c - b
return a, b, c, d
def split_cubic_into_n(p0, p1, p2, p3, n):
a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3)
segments = []
dt = 1 / n
delta_2 = dt * dt
delta_3 = dt * delta_2
for i in range(n):
t1 = i * dt
t1_2 = t1 * t1
t1_3 = t1 * t1_2
# calc new a, b, c and d
a1 = a * delta_3
b1 = (3*a*t1 + b) * delta_2
c1 = (2*b*t1 + c + 3*a*t1_2) * dt
d1 = a*t1_3 + b*t1_2 + c*t1 + d
segments.append(calc_cubic_points(a1, b1, c1, d1))
return segments
def split_cubic_into_two(p0, p1, p2, p3):
mid = (p0 + 3 * (p1 + p2) + p3) * .125
deriv3 = (p3 + p2 - p1 - p0) * .125
return ((p0, (p0 + p1) * .5, mid - deriv3, mid),
(mid, mid + deriv3, (p2 + p3) * .5, p3))
def split_cubic_into_three(p0, p1, p2, p3, _27=1/27):
mid1 = (8*p0 + 12*p1 + 6*p2 + p3) * _27
deriv1 = (p3 + 3*p2 - 4*p0) * _27
mid2 = (p0 + 6*p1 + 12*p2 + 8*p3) * _27
deriv2 = (4*p3 - 3*p1 - p0) * _27
return ((p0, (2*p0 + p1) / 3, mid1 - deriv1, mid1),
(mid1, mid1 + deriv1, mid2 - deriv2, mid2),
(mid2, mid2 + deriv2, (p2 + 2*p3) / 3, p3))
class Cu2QuError(Exception):
pass
class ApproxNotFoundError(Cu2QuError):
def __init__(self, curve):
message = "no approximation found: %s" % curve
super(Cu2QuError, self).__init__(message)
self.curve = curve
def dot(v1, v2):
"""Return the dot product of two vectors."""
return (v1 * v2.conjugate()).real
def cubic_approx_control(p, t):
"""Approximate a cubic bezier curve with a quadratic one.
Returns the candidate control point."""
p1 = p[0] + (p[1] - p[0]) * 1.5
p2 = p[3] + (p[2] - p[3]) * 1.5
return p1 + (p2 - p1) * t
def calc_intersect(a, b, c, d):
"""Calculate the intersection of ab and cd, given a, b, c, d."""
ab = b - a
cd = d - c
p = ab * 1j
try:
h = dot(p, a - c) / dot(p, cd)
except ZeroDivisionError:
return None
return c + cd * h
def _cubic_farthest_fit(p0, p1, p2, p3, tolerance):
"""Returns True if the cubic Bezier p entirely lies within a distance
tolerance of origin, False otherwise."""
if abs(p1) <= tolerance and abs(p2) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * .125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * .125
return (_cubic_farthest_fit(p0, (p0 + p1) * .5, mid - deriv3, mid, tolerance) and
_cubic_farthest_fit(mid, mid + deriv3, (p2 + p3) * .5, p3, tolerance))
def cubic_farthest_fit(p0, p1, p2, p3, tolerance):
"""Returns True if the cubic Bezier p entirely lies within a distance
tolerance of origin, False otherwise."""
if abs(p0) > tolerance or abs(p3) > tolerance:
return False
if abs(p1) <= tolerance and abs(p2) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * .125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * .125
return (_cubic_farthest_fit(p0, (p0 + p1) * .5, mid - deriv3, mid, tolerance) and
_cubic_farthest_fit(mid, mid + deriv3, (p2 + p3) * .5, p3, tolerance))
def cubic_approx_spline(cubic, n, tolerance):
"""Approximate a cubic bezier curve with a spline of n quadratics.
Returns None if n is 1 and the cubic's control vectors are parallel, since
no quadratic exists with this cubic's tangents.
"""
if n == 1:
q1 = calc_intersect(*cubic)
if q1 is None:
return None
c0 = cubic[0]
c3 = cubic[3]
c1 = c0 + (q1 - c0) * (2/3)
c2 = c3 + (q1 - c3) * (2/3)
if not cubic_farthest_fit(0,
c1 - cubic[1],
c2 - cubic[2],
0, tolerance):
return None
return c0, q1, c3
spline = [cubic[0]]
if n == 2:
segments = split_cubic_into_two(cubic[0], cubic[1], cubic[2], cubic[3])
elif n == 3:
segments = split_cubic_into_three(cubic[0], cubic[1], cubic[2], cubic[3])
else:
segments = split_cubic_into_n(cubic[0], cubic[1], cubic[2], cubic[3], n)
for i in range(len(segments)):
spline.append(cubic_approx_control(segments[i], i / (n - 1)))
spline.append(cubic[3])
for i in range(1, n + 1):
if i == 1:
q0, q1, q2 = (spline[0], spline[1], (spline[1] + spline[2]) * .5)
elif i == n:
q0, q1, q2 = (spline[-3] + spline[-2]) * .5, spline[-2], spline[-1]
else:
q0, q1, q2 = (spline[i - 1] + spline[i]) * .5, spline[i], (spline[i] + spline[i + 1]) * .5
c0, c1, c2, c3 = segments[i - 1]
if not cubic_farthest_fit(q0 - c0,
q0 + (q1 - q0) * (2/3) - c1,
q2 + (q1 - q2) * (2/3) - c2,
q2 - c3,
tolerance):
return None
return spline
def curve_to_quadratic(curve, max_err):
"""Return a quadratic spline approximating this cubic bezier, and
the error of approximation.
Raise 'ApproxNotFoundError' if no suitable approximation can be found
with the given parameters.
"""
curve = [complex(*p) for p in curve]
spline = None
for n in range(1, MAX_N + 1):
spline = cubic_approx_spline(curve, n, max_err)
if spline is not None:
break
else:
# no break: approximation not found
raise ApproxNotFoundError(curve)
return [(s.real, s.imag) for s in spline]
def curves_to_quadratic(curves, max_errors):
"""Return quadratic splines approximating these cubic beziers, and
the respective errors of approximation.
Raise 'ApproxNotFoundError' if no suitable approximation can be found
for all curves with the given parameters.
"""
curves = [[complex(*p) for p in curve] for curve in curves]
num_curves = len(curves)
assert len(max_errors) == num_curves
splines = [None] * num_curves
for n in range(1, MAX_N + 1):
splines = [cubic_approx_spline(c, n, e) for c, e in zip(curves, max_errors)]
if all(splines):
break
else:
# no break: raise if any spline is None or error exceeds tolerance
for c, s in zip(curves, splines):
if s is None:
raise ApproxNotFoundError(c)
return [[(s.real, s.imag) for s in spline] for spline in splines]