Cosimo Lupo 0df4997661
prevent cython.compiled raise AttributeError if cython not properly installed
It's possible sometimes that 'import cython' does not fail but then 'cython.compiled' raises AttributeError.
It actually happened in our internal production environment...

Similar issue to https://github.com/pydantic/pydantic/pull/573 and https://github.com/ipython/ipython/issues/13294
2023-03-02 17:43:38 +00:00

516 lines
16 KiB
Python

# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
import math
from .errors import Error as Cu2QuError, ApproxNotFoundError
__all__ = ["curve_to_quadratic", "curves_to_quadratic"]
MAX_N = 100
NAN = float("NaN")
@cython.cfunc
@cython.inline
@cython.returns(cython.double)
@cython.locals(v1=cython.complex, v2=cython.complex)
def dot(v1, v2):
"""Return the dot product of two vectors.
Args:
v1 (complex): First vector.
v2 (complex): Second vector.
Returns:
double: Dot product.
"""
return (v1 * v2.conjugate()).real
@cython.cfunc
@cython.inline
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
@cython.locals(
_1=cython.complex, _2=cython.complex, _3=cython.complex, _4=cython.complex
)
def calc_cubic_points(a, b, c, d):
_1 = d
_2 = (c / 3.0) + d
_3 = (b + c) / 3.0 + _2
_4 = a + d + c + b
return _1, _2, _3, _4
@cython.cfunc
@cython.inline
@cython.locals(
p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
)
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
def calc_cubic_parameters(p0, p1, p2, p3):
c = (p1 - p0) * 3.0
b = (p2 - p1) * 3.0 - c
d = p0
a = p3 - d - c - b
return a, b, c, d
@cython.cfunc
@cython.locals(
p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
)
def split_cubic_into_n_iter(p0, p1, p2, p3, n):
"""Split a cubic Bezier into n equal parts.
Splits the curve into `n` equal parts by curve time.
(t=0..1/n, t=1/n..2/n, ...)
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
An iterator yielding the control points (four complex values) of the
subcurves.
"""
# Hand-coded special-cases
if n == 2:
return iter(split_cubic_into_two(p0, p1, p2, p3))
if n == 3:
return iter(split_cubic_into_three(p0, p1, p2, p3))
if n == 4:
a, b = split_cubic_into_two(p0, p1, p2, p3)
return iter(split_cubic_into_two(*a) + split_cubic_into_two(*b))
if n == 6:
a, b = split_cubic_into_two(p0, p1, p2, p3)
return iter(split_cubic_into_three(*a) + split_cubic_into_three(*b))
return _split_cubic_into_n_gen(p0, p1, p2, p3, n)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
n=cython.int,
)
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
@cython.locals(
dt=cython.double, delta_2=cython.double, delta_3=cython.double, i=cython.int
)
@cython.locals(
a1=cython.complex, b1=cython.complex, c1=cython.complex, d1=cython.complex
)
def _split_cubic_into_n_gen(p0, p1, p2, p3, n):
a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3)
dt = 1 / n
delta_2 = dt * dt
delta_3 = dt * delta_2
for i in range(n):
t1 = i * dt
t1_2 = t1 * t1
# calc new a, b, c and d
a1 = a * delta_3
b1 = (3 * a * t1 + b) * delta_2
c1 = (2 * b * t1 + c + 3 * a * t1_2) * dt
d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d
yield calc_cubic_points(a1, b1, c1, d1)
@cython.locals(
p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def split_cubic_into_two(p0, p1, p2, p3):
"""Split a cubic Bezier into two equal parts.
Splits the curve into two equal parts at t = 0.5
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
tuple: Two cubic Beziers (each expressed as a tuple of four complex
values).
"""
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return (
(p0, (p0 + p1) * 0.5, mid - deriv3, mid),
(mid, mid + deriv3, (p2 + p3) * 0.5, p3),
)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
_27=cython.double,
)
@cython.locals(
mid1=cython.complex,
deriv1=cython.complex,
mid2=cython.complex,
deriv2=cython.complex,
)
def split_cubic_into_three(p0, p1, p2, p3, _27=1 / 27):
"""Split a cubic Bezier into three equal parts.
Splits the curve into three equal parts at t = 1/3 and t = 2/3
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
tuple: Three cubic Beziers (each expressed as a tuple of four complex
values).
"""
# we define 1/27 as a keyword argument so that it will be evaluated only
# once but still in the scope of this function
mid1 = (8 * p0 + 12 * p1 + 6 * p2 + p3) * _27
deriv1 = (p3 + 3 * p2 - 4 * p0) * _27
mid2 = (p0 + 6 * p1 + 12 * p2 + 8 * p3) * _27
deriv2 = (4 * p3 - 3 * p1 - p0) * _27
return (
(p0, (2 * p0 + p1) / 3.0, mid1 - deriv1, mid1),
(mid1, mid1 + deriv1, mid2 - deriv2, mid2),
(mid2, mid2 + deriv2, (p2 + 2 * p3) / 3.0, p3),
)
@cython.returns(cython.complex)
@cython.locals(
t=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(_p1=cython.complex, _p2=cython.complex)
def cubic_approx_control(t, p0, p1, p2, p3):
"""Approximate a cubic Bezier using a quadratic one.
Args:
t (double): Position of control point.
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
complex: Location of candidate control point on quadratic curve.
"""
_p1 = p0 + (p1 - p0) * 1.5
_p2 = p3 + (p2 - p3) * 1.5
return _p1 + (_p2 - _p1) * t
@cython.returns(cython.complex)
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
@cython.locals(ab=cython.complex, cd=cython.complex, p=cython.complex, h=cython.double)
def calc_intersect(a, b, c, d):
"""Calculate the intersection of two lines.
Args:
a (complex): Start point of first line.
b (complex): End point of first line.
c (complex): Start point of second line.
d (complex): End point of second line.
Returns:
complex: Location of intersection if one present, ``complex(NaN,NaN)``
if no intersection was found.
"""
ab = b - a
cd = d - c
p = ab * 1j
try:
h = dot(p, a - c) / dot(p, cd)
except ZeroDivisionError:
return complex(NAN, NAN)
return c + cd * h
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.cfunc
@cython.locals(tolerance=cython.double, _2_3=cython.double)
@cython.locals(
q1=cython.complex,
c0=cython.complex,
c1=cython.complex,
c2=cython.complex,
c3=cython.complex,
)
def cubic_approx_quadratic(cubic, tolerance, _2_3=2 / 3):
"""Approximate a cubic Bezier with a single quadratic within a given tolerance.
Args:
cubic (sequence): Four complex numbers representing control points of
the cubic Bezier curve.
tolerance (double): Permitted deviation from the original curve.
Returns:
Three complex numbers representing control points of the quadratic
curve if it fits within the given tolerance, or ``None`` if no suitable
curve could be calculated.
"""
# we define 2/3 as a keyword argument so that it will be evaluated only
# once but still in the scope of this function
q1 = calc_intersect(*cubic)
if math.isnan(q1.imag):
return None
c0 = cubic[0]
c3 = cubic[3]
c1 = c0 + (q1 - c0) * _2_3
c2 = c3 + (q1 - c3) * _2_3
if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance):
return None
return c0, q1, c3
@cython.cfunc
@cython.locals(n=cython.int, tolerance=cython.double, _2_3=cython.double)
@cython.locals(i=cython.int)
@cython.locals(
c0=cython.complex, c1=cython.complex, c2=cython.complex, c3=cython.complex
)
@cython.locals(
q0=cython.complex,
q1=cython.complex,
next_q1=cython.complex,
q2=cython.complex,
d1=cython.complex,
)
def cubic_approx_spline(cubic, n, tolerance, all_quadratic, _2_3=2 / 3):
"""Approximate a cubic Bezier curve with a spline of n quadratics.
Args:
cubic (sequence): Four complex numbers representing control points of
the cubic Bezier curve.
n (int): Number of quadratic Bezier curves in the spline.
tolerance (double): Permitted deviation from the original curve.
Returns:
A list of ``n+2`` complex numbers, representing control points of the
quadratic spline if it fits within the given tolerance, or ``None`` if
no suitable spline could be calculated.
"""
# we define 2/3 as a keyword argument so that it will be evaluated only
# once but still in the scope of this function
if n == 1:
return cubic_approx_quadratic(cubic, tolerance)
if n == 2 and all_quadratic == False:
return cubic
cubics = split_cubic_into_n_iter(cubic[0], cubic[1], cubic[2], cubic[3], n)
# calculate the spline of quadratics and check errors at the same time.
next_cubic = next(cubics)
next_q1 = cubic_approx_control(0, *next_cubic)
q2 = cubic[0]
d1 = 0j
spline = [cubic[0], next_q1]
for i in range(1, n + 1):
# Current cubic to convert
c0, c1, c2, c3 = next_cubic
# Current quadratic approximation of current cubic
q0 = q2
q1 = next_q1
if i < n:
next_cubic = next(cubics)
next_q1 = cubic_approx_control(i / (n - 1), *next_cubic)
spline.append(next_q1)
q2 = (q1 + next_q1) * 0.5
else:
q2 = c3
# End-point deltas
d0 = d1
d1 = q2 - c3
if abs(d1) > tolerance or not cubic_farthest_fit_inside(
d0, q0 + (q1 - q0) * _2_3 - c1, q2 + (q1 - q2) * _2_3 - c2, d1, tolerance
):
return None
spline.append(cubic[3])
return spline
@cython.locals(max_err=cython.double)
@cython.locals(n=cython.int)
def curve_to_quadratic(curve, max_err, all_quadratic=True):
"""Approximate a cubic Bezier curve with a spline of n quadratics.
Args:
cubic (sequence): Four 2D tuples representing control points of
the cubic Bezier curve.
max_err (double): Permitted deviation from the original curve.
all_quadratic (bool): If True (default) returned value is a
quadratic spline. If False, it's either a single quadratic
curve or a single cubic curve.
Returns:
If all_quadratic is True: A list of 2D tuples, representing
control points of the quadratic spline if it fits within the
given tolerance, or ``None`` if no suitable spline could be
calculated.
If all_quadratic is False: Either a quadratic curve (if length
of output is 3), or a cubic curve (if length of output is 4).
"""
curve = [complex(*p) for p in curve]
for n in range(1, MAX_N + 1):
spline = cubic_approx_spline(curve, n, max_err, all_quadratic)
if spline is not None:
# done. go home
return [(s.real, s.imag) for s in spline]
raise ApproxNotFoundError(curve)
@cython.locals(l=cython.int, last_i=cython.int, i=cython.int)
def curves_to_quadratic(curves, max_errors, all_quadratic=True):
"""Return quadratic Bezier splines approximating the input cubic Beziers.
Args:
curves: A sequence of *n* curves, each curve being a sequence of four
2D tuples.
max_errors: A sequence of *n* floats representing the maximum permissible
deviation from each of the cubic Bezier curves.
all_quadratic (bool): If True (default) returned values are a
quadratic spline. If False, they are either a single quadratic
curve or a single cubic curve.
Example::
>>> curves_to_quadratic( [
... [ (50,50), (100,100), (150,100), (200,50) ],
... [ (75,50), (120,100), (150,75), (200,60) ]
... ], [1,1] )
[[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]]
The returned splines have "implied oncurve points" suitable for use in
TrueType ``glif`` outlines - i.e. in the first spline returned above,
the first quadratic segment runs from (50,50) to
( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...).
Returns:
If all_quadratic is True, a list of splines, each spline being a list
of 2D tuples.
If all_quadratic is False, a list of curves, each curve being a quadratic
(length 3), or cubic (length 4).
Raises:
fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation
can be found for all curves with the given parameters.
"""
curves = [[complex(*p) for p in curve] for curve in curves]
assert len(max_errors) == len(curves)
l = len(curves)
splines = [None] * l
last_i = i = 0
n = 1
while True:
spline = cubic_approx_spline(curves[i], n, max_errors[i], all_quadratic)
if spline is None:
if n == MAX_N:
break
n += 1
last_i = i
continue
splines[i] = spline
i = (i + 1) % l
if i == last_i:
# done. go home
return [[(s.real, s.imag) for s in spline] for spline in splines]
raise ApproxNotFoundError(curves)