Cosimo Lupo 0df4997661
prevent cython.compiled raise AttributeError if cython not properly installed
It's possible sometimes that 'import cython' does not fail but then 'cython.compiled' raises AttributeError.
It actually happened in our internal production environment...

Similar issue to https://github.com/pydantic/pydantic/pull/573 and https://github.com/ipython/ipython/issues/13294
2023-03-02 17:43:38 +00:00

410 lines
12 KiB
Python

# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2023 Google Inc. All Rights Reserved.
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
from fontTools.misc.bezierTools import splitCubicAtTC
from collections import namedtuple
import math
from typing import (
List,
Tuple,
Union,
)
__all__ = ["quadratic_to_curves"]
# Copied from cu2qu
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.locals(_1_3=cython.double, _2_3=cython.double)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p1_2_3=cython.complex,
)
def elevate_quadratic(p0, p1, p2, _1_3=1 / 3, _2_3=2 / 3):
"""Given a quadratic bezier curve, return its degree-elevated cubic."""
# https://pomax.github.io/bezierinfo/#reordering
p1_2_3 = p1 * _2_3
return (
p0,
(p0 * _1_3 + p1_2_3),
(p2 * _1_3 + p1_2_3),
p2,
)
@cython.locals(
start=cython.int,
n=cython.int,
k=cython.int,
prod_ratio=cython.double,
sum_ratio=cython.double,
ratio=cython.double,
t=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
def merge_curves(curves, start, n):
"""Give a cubic-Bezier spline, reconstruct one cubic-Bezier
that has the same endpoints and tangents and approxmates
the spline."""
# Reconstruct the t values of the cut segments
prod_ratio = 1.0
sum_ratio = 1.0
ts = [1]
for k in range(1, n):
ck = curves[start + k]
c_before = curves[start + k - 1]
# |t_(k+1) - t_k| / |t_k - t_(k - 1)| = ratio
assert ck[0] == c_before[3]
ratio = abs(ck[1] - ck[0]) / abs(c_before[3] - c_before[2])
prod_ratio *= ratio
sum_ratio += prod_ratio
ts.append(sum_ratio)
# (t(n) - t(n - 1)) / (t_(1) - t(0)) = prod_ratio
ts = [t / sum_ratio for t in ts[:-1]]
p0 = curves[start][0]
p1 = curves[start][1]
p2 = curves[start + n - 1][2]
p3 = curves[start + n - 1][3]
# Build the curve by scaling the control-points.
p1 = p0 + (p1 - p0) / (ts[0] if ts else 1)
p2 = p3 + (p2 - p3) / ((1 - ts[-1]) if ts else 1)
curve = (p0, p1, p2, p3)
return curve, ts
@cython.locals(
count=cython.int,
num_offcurves=cython.int,
i=cython.int,
off1=cython.complex,
off2=cython.complex,
on=cython.complex,
)
def add_implicit_on_curves(p):
q = list(p)
count = 0
num_offcurves = len(p) - 2
for i in range(1, num_offcurves):
off1 = p[i]
off2 = p[i + 1]
on = off1 + (off2 - off1) * 0.5
q.insert(i + 1 + count, on)
count += 1
return q
Point = Union[Tuple[float, float], complex]
@cython.locals(
cost=cython.int,
is_complex=cython.int,
)
def quadratic_to_curves(
quads: List[List[Point]],
max_err: float = 0.5,
all_cubic: bool = False,
) -> List[Tuple[Point, ...]]:
"""Converts a connecting list of quadratic splines to a list of quadratic
and cubic curves.
A quadratic spline is specified as a list of points. Either each point is
a 2-tuple of X,Y coordinates, or each point is a complex number with
real/imaginary components representing X,Y coordinates.
The first and last points are on-curve points and the rest are off-curve
points, with an implied on-curve point in the middle between every two
consequtive off-curve points.
Returns:
The output is a list of tuples of points. Points are represented
in the same format as the input, either as 2-tuples or complex numbers.
Each tuple is either of length three, for a quadratic curve, or four,
for a cubic curve. Each curve's last point is the same as the next
curve's first point.
Args:
quads: quadratic splines
max_err: absolute error tolerance; defaults to 0.5
all_cubic: if True, only cubic curves are generated; defaults to False
"""
is_complex = type(quads[0][0]) is complex
if not is_complex:
quads = [[complex(x, y) for (x, y) in p] for p in quads]
q = [quads[0][0]]
costs = [1]
cost = 1
for p in quads:
assert q[-1] == p[0]
for i in range(len(p) - 2):
cost += 1
costs.append(cost)
costs.append(cost)
qq = add_implicit_on_curves(p)[1:]
costs.pop()
q.extend(qq)
cost += 1
costs.append(cost)
curves = spline_to_curves(q, costs, max_err, all_cubic)
if not is_complex:
curves = [tuple((c.real, c.imag) for c in curve) for curve in curves]
return curves
Solution = namedtuple("Solution", ["num_points", "error", "start_index", "is_cubic"])
@cython.locals(
i=cython.int,
j=cython.int,
k=cython.int,
start=cython.int,
i_sol_count=cython.int,
j_sol_count=cython.int,
this_sol_count=cython.int,
tolerance=cython.double,
err=cython.double,
error=cython.double,
i_sol_error=cython.double,
j_sol_error=cython.double,
all_cubic=cython.int,
is_cubic=cython.int,
count=cython.int,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
v=cython.complex,
u=cython.complex,
)
def spline_to_curves(q, costs, tolerance=0.5, all_cubic=False):
"""
q: quadratic spline with alternating on-curve / off-curve points.
costs: cumulative list of encoding cost of q in terms of number of
points that need to be encoded. Implied on-curve points do not
contribute to the cost. If all points need to be encoded, then
costs will be range(1, len(q)+1).
"""
assert len(q) >= 3, "quadratic spline requires at least 3 points"
# Elevate quadratic segments to cubic
elevated_quadratics = [
elevate_quadratic(*q[i : i + 3]) for i in range(0, len(q) - 2, 2)
]
# Find sharp corners; they have to be oncurves for sure.
forced = set()
for i in range(1, len(elevated_quadratics)):
p0 = elevated_quadratics[i - 1][2]
p1 = elevated_quadratics[i][0]
p2 = elevated_quadratics[i][1]
if abs(p1 - p0) + abs(p2 - p1) > tolerance + abs(p2 - p0):
forced.add(i)
# Dynamic-Programming to find the solution with fewest number of
# cubic curves, and within those the one with smallest error.
sols = [Solution(0, 0, 0, False)]
impossible = Solution(len(elevated_quadratics) * 3 + 1, 0, 1, False)
start = 0
for i in range(1, len(elevated_quadratics) + 1):
best_sol = impossible
for j in range(start, i):
j_sol_count, j_sol_error = sols[j].num_points, sols[j].error
if not all_cubic:
# Solution with quadratics between j:i
this_count = costs[2 * i - 1] - costs[2 * j] + 1
i_sol_count = j_sol_count + this_count
i_sol_error = j_sol_error
i_sol = Solution(i_sol_count, i_sol_error, i - j, False)
if i_sol < best_sol:
best_sol = i_sol
if this_count <= 3:
# Can't get any better than this in the path below
continue
# Fit elevated_quadratics[j:i] into one cubic
try:
curve, ts = merge_curves(elevated_quadratics, j, i - j)
except ZeroDivisionError:
continue
# Now reconstruct the segments from the fitted curve
reconstructed_iter = splitCubicAtTC(*curve, *ts)
reconstructed = []
# Knot errors
error = 0
for k, reconst in enumerate(reconstructed_iter):
orig = elevated_quadratics[j + k]
err = abs(reconst[3] - orig[3])
error = max(error, err)
if error > tolerance:
break
reconstructed.append(reconst)
if error > tolerance:
# Not feasible
continue
# Interior errors
for k, reconst in enumerate(reconstructed):
orig = elevated_quadratics[j + k]
p0, p1, p2, p3 = tuple(v - u for v, u in zip(reconst, orig))
if not cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
error = tolerance + 1
break
if error > tolerance:
# Not feasible
continue
# Save best solution
i_sol_count = j_sol_count + 3
i_sol_error = max(j_sol_error, error)
i_sol = Solution(i_sol_count, i_sol_error, i - j, True)
if i_sol < best_sol:
best_sol = i_sol
if i_sol_count == 3:
# Can't get any better than this
break
sols.append(best_sol)
if i in forced:
start = i
# Reconstruct solution
splits = []
cubic = []
i = len(sols) - 1
while i:
count, is_cubic = sols[i].start_index, sols[i].is_cubic
splits.append(i)
cubic.append(is_cubic)
i -= count
curves = []
j = 0
for i, is_cubic in reversed(list(zip(splits, cubic))):
if is_cubic:
curves.append(merge_curves(elevated_quadratics, j, i - j)[0])
else:
for k in range(j, i):
curves.append(q[k * 2 : k * 2 + 3])
j = i
return curves
def main():
from fontTools.cu2qu.benchmark import generate_curve
from fontTools.cu2qu import curve_to_quadratic
tolerance = 0.05
reconstruct_tolerance = tolerance * 1
curve = generate_curve()
quadratics = curve_to_quadratic(curve, tolerance)
print(
"cu2qu tolerance %g. qu2cu tolerance %g." % (tolerance, reconstruct_tolerance)
)
print("One random cubic turned into %d quadratics." % len(quadratics))
curves = quadratic_to_curves([quadratics], reconstruct_tolerance)
print("Those quadratics turned back into %d cubics. " % len(curves))
print("Original curve:", curve)
print("Reconstructed curve(s):", curves)
if __name__ == "__main__":
main()