Cosimo Lupo 0df4997661
prevent cython.compiled raise AttributeError if cython not properly installed
It's possible sometimes that 'import cython' does not fail but then 'cython.compiled' raises AttributeError.
It actually happened in our internal production environment...

Similar issue to https://github.com/pydantic/pydantic/pull/573 and https://github.com/ipython/ipython/issues/13294
2023-03-02 17:43:38 +00:00

449 lines
14 KiB
Python

from typing import (
Sequence,
Tuple,
Union,
)
from numbers import Integral, Real
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
_Point = Tuple[Real, Real]
_Delta = Tuple[Real, Real]
_PointSegment = Sequence[_Point]
_DeltaSegment = Sequence[_Delta]
_DeltaOrNone = Union[_Delta, None]
_DeltaOrNoneSegment = Sequence[_DeltaOrNone]
_Endpoints = Sequence[Integral]
MAX_LOOKBACK = 8
def iup_segment(
coords: _PointSegment, rc1: _Point, rd1: _Delta, rc2: _Point, rd2: _Delta
) -> _DeltaSegment:
"""Given two reference coordinates `rc1` & `rc2` and their respective
delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of
coordinates `coords`."""
# rc1 = reference coord 1
# rd1 = reference delta 1
out_arrays = [None, None]
for j in 0, 1:
out_arrays[j] = out = []
x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]
if x1 == x2:
n = len(coords)
if d1 == d2:
out.extend([d1] * n)
else:
out.extend([0] * n)
continue
if x1 > x2:
x1, x2 = x2, x1
d1, d2 = d2, d1
# x1 < x2
scale = (d2 - d1) / (x2 - x1)
for pair in coords:
x = pair[j]
if x <= x1:
d = d1
elif x >= x2:
d = d2
else:
# Interpolate
d = d1 + (x - x1) * scale
out.append(d)
return zip(*out_arrays)
def iup_contour(deltas: _DeltaOrNoneSegment, coords: _PointSegment) -> _DeltaSegment:
"""For the contour given in `coords`, interpolate any missing
delta values in delta vector `deltas`.
Returns fully filled-out delta vector."""
assert len(deltas) == len(coords)
if None not in deltas:
return deltas
n = len(deltas)
# indices of points with explicit deltas
indices = [i for i, v in enumerate(deltas) if v is not None]
if not indices:
# All deltas are None. Return 0,0 for all.
return [(0, 0)] * n
out = []
it = iter(indices)
start = next(it)
if start != 0:
# Initial segment that wraps around
i1, i2, ri1, ri2 = 0, start, start, indices[-1]
out.extend(
iup_segment(
coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
)
)
out.append(deltas[start])
for end in it:
if end - start > 1:
i1, i2, ri1, ri2 = start + 1, end, start, end
out.extend(
iup_segment(
coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
)
)
out.append(deltas[end])
start = end
if start != n - 1:
# Final segment that wraps around
i1, i2, ri1, ri2 = start + 1, n, start, indices[0]
out.extend(
iup_segment(
coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
)
)
assert len(deltas) == len(out), (len(deltas), len(out))
return out
def iup_delta(
deltas: _DeltaOrNoneSegment, coords: _PointSegment, ends: _Endpoints
) -> _DeltaSegment:
"""For the outline given in `coords`, with contour endpoints given
in sorted increasing order in `ends`, interpolate any missing
delta values in delta vector `deltas`.
Returns fully filled-out delta vector."""
assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
n = len(coords)
ends = ends + [n - 4, n - 3, n - 2, n - 1]
out = []
start = 0
for end in ends:
end += 1
contour = iup_contour(deltas[start:end], coords[start:end])
out.extend(contour)
start = end
return out
# Optimizer
def can_iup_in_between(
deltas: _DeltaSegment,
coords: _PointSegment,
i: Integral,
j: Integral,
tolerance: Real,
) -> bool:
"""Return true if the deltas for points at `i` and `j` (`i < j`) can be
successfully used to interpolate deltas for points in between them within
provided error tolerance."""
assert j - i >= 2
interp = list(
iup_segment(coords[i + 1 : j], coords[i], deltas[i], coords[j], deltas[j])
)
deltas = deltas[i + 1 : j]
assert len(deltas) == len(interp)
return all(
abs(complex(x - p, y - q)) <= tolerance
for (x, y), (p, q) in zip(deltas, interp)
)
def _iup_contour_bound_forced_set(
deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0
) -> set:
"""The forced set is a conservative set of points on the contour that must be encoded
explicitly (ie. cannot be interpolated). Calculating this set allows for significantly
speeding up the dynamic-programming, as well as resolve circularity in DP.
The set is precise; that is, if an index is in the returned set, then there is no way
that IUP can generate delta for that point, given `coords` and `deltas`.
"""
assert len(deltas) == len(coords)
n = len(deltas)
forced = set()
# Track "last" and "next" points on the contour as we sweep.
for i in range(len(deltas) - 1, -1, -1):
ld, lc = deltas[i - 1], coords[i - 1]
d, c = deltas[i], coords[i]
nd, nc = deltas[i - n + 1], coords[i - n + 1]
for j in (0, 1): # For X and for Y
cj = c[j]
dj = d[j]
lcj = lc[j]
ldj = ld[j]
ncj = nc[j]
ndj = nd[j]
if lcj <= ncj:
c1, c2 = lcj, ncj
d1, d2 = ldj, ndj
else:
c1, c2 = ncj, lcj
d1, d2 = ndj, ldj
force = False
# If the two coordinates are the same, then the interpolation
# algorithm produces the same delta if both deltas are equal,
# and zero if they differ.
#
# This test has to be before the next one.
if c1 == c2:
if abs(d1 - d2) > tolerance and abs(dj) > tolerance:
force = True
# If coordinate for current point is between coordinate of adjacent
# points on the two sides, but the delta for current point is NOT
# between delta for those adjacent points (considering tolerance
# allowance), then there is no way that current point can be IUP-ed.
# Mark it forced.
elif c1 <= cj <= c2: # and c1 != c2
if not (min(d1, d2) - tolerance <= dj <= max(d1, d2) + tolerance):
force = True
# Otherwise, the delta should either match the closest, or have the
# same sign as the interpolation of the two deltas.
else: # cj < c1 or c2 < cj
if d1 != d2:
if cj < c1:
if (
abs(dj) > tolerance
and abs(dj - d1) > tolerance
and ((dj - tolerance < d1) != (d1 < d2))
):
force = True
else: # c2 < cj
if (
abs(dj) > tolerance
and abs(dj - d2) > tolerance
and ((d2 < dj + tolerance) != (d1 < d2))
):
force = True
if force:
forced.add(i)
break
return forced
def _iup_contour_optimize_dp(
deltas: _DeltaSegment,
coords: _PointSegment,
forced={},
tolerance: Real = 0,
lookback: Integral = None,
):
"""Straightforward Dynamic-Programming. For each index i, find least-costly encoding of
points 0 to i where i is explicitly encoded. We find this by considering all previous
explicit points j and check whether interpolation can fill points between j and i.
Note that solution always encodes last point explicitly. Higher-level is responsible
for removing that restriction.
As major speedup, we stop looking further whenever we see a "forced" point."""
n = len(deltas)
if lookback is None:
lookback = n
lookback = min(lookback, MAX_LOOKBACK)
costs = {-1: 0}
chain = {-1: None}
for i in range(0, n):
best_cost = costs[i - 1] + 1
costs[i] = best_cost
chain[i] = i - 1
if i - 1 in forced:
continue
for j in range(i - 2, max(i - lookback, -2), -1):
cost = costs[j] + 1
if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance):
costs[i] = best_cost = cost
chain[i] = j
if j in forced:
break
return chain, costs
def _rot_list(l: list, k: int):
"""Rotate list by k items forward. Ie. item at position 0 will be
at position k in returned list. Negative k is allowed."""
n = len(l)
k %= n
if not k:
return l
return l[n - k :] + l[: n - k]
def _rot_set(s: set, k: int, n: int):
k %= n
if not k:
return s
return {(v + k) % n for v in s}
def iup_contour_optimize(
deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0.0
) -> _DeltaOrNoneSegment:
"""For contour with coordinates `coords`, optimize a set of delta
values `deltas` within error `tolerance`.
Returns delta vector that has most number of None items instead of
the input delta.
"""
n = len(deltas)
# Get the easy cases out of the way:
# If all are within tolerance distance of 0, encode nothing:
if all(abs(complex(*p)) <= tolerance for p in deltas):
return [None] * n
# If there's exactly one point, return it:
if n == 1:
return deltas
# If all deltas are exactly the same, return just one (the first one):
d0 = deltas[0]
if all(d0 == d for d in deltas):
return [d0] + [None] * (n - 1)
# Else, solve the general problem using Dynamic Programming.
forced = _iup_contour_bound_forced_set(deltas, coords, tolerance)
# The _iup_contour_optimize_dp() routine returns the optimal encoding
# solution given the constraint that the last point is always encoded.
# To remove this constraint, we use two different methods, depending on
# whether forced set is non-empty or not:
# Debugging: Make the next if always take the second branch and observe
# if the font size changes (reduced); that would mean the forced-set
# has members it should not have.
if forced:
# Forced set is non-empty: rotate the contour start point
# such that the last point in the list is a forced point.
k = (n - 1) - max(forced)
assert k >= 0
deltas = _rot_list(deltas, k)
coords = _rot_list(coords, k)
forced = _rot_set(forced, k, n)
# Debugging: Pass a set() instead of forced variable to the next call
# to exercise forced-set computation for under-counting.
chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance)
# Assemble solution.
solution = set()
i = n - 1
while i is not None:
solution.add(i)
i = chain[i]
solution.remove(-1)
# if not forced <= solution:
# print("coord", coords)
# print("deltas", deltas)
# print("len", len(deltas))
assert forced <= solution, (forced, solution)
deltas = [deltas[i] if i in solution else None for i in range(n)]
deltas = _rot_list(deltas, -k)
else:
# Repeat the contour an extra time, solve the new case, then look for solutions of the
# circular n-length problem in the solution for new linear case. I cannot prove that
# this always produces the optimal solution...
chain, costs = _iup_contour_optimize_dp(
deltas + deltas, coords + coords, forced, tolerance, n
)
best_sol, best_cost = None, n + 1
for start in range(n - 1, len(costs) - 1):
# Assemble solution.
solution = set()
i = start
while i > start - n:
solution.add(i % n)
i = chain[i]
if i == start - n:
cost = costs[start] - costs[start - n]
if cost <= best_cost:
best_sol, best_cost = solution, cost
# if not forced <= best_sol:
# print("coord", coords)
# print("deltas", deltas)
# print("len", len(deltas))
assert forced <= best_sol, (forced, best_sol)
deltas = [deltas[i] if i in best_sol else None for i in range(n)]
return deltas
def iup_delta_optimize(
deltas: _DeltaSegment,
coords: _PointSegment,
ends: _Endpoints,
tolerance: Real = 0.0,
) -> _DeltaOrNoneSegment:
"""For the outline given in `coords`, with contour endpoints given
in sorted increasing order in `ends`, optimize a set of delta
values `deltas` within error `tolerance`.
Returns delta vector that has most number of None items instead of
the input delta.
"""
assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
n = len(coords)
ends = ends + [n - 4, n - 3, n - 2, n - 1]
out = []
start = 0
for end in ends:
contour = iup_contour_optimize(
deltas[start : end + 1], coords[start : end + 1], tolerance
)
assert len(contour) == end - start + 1
out.extend(contour)
start = end + 1
return out