fonttools/Lib/fontTools/psCharStrings.py
Just 7842e56b97 Created a new library directory called "FreeLib". All OpenSource RFMKII components will reside there, fontTools being the flagship.
git-svn-id: svn://svn.code.sf.net/p/fonttools/code/trunk@2 4cde692c-a291-49d1-8350-778aa11640f8
1999-12-16 21:34:53 +00:00

975 lines
23 KiB
Python

"""psCharStrings.py -- module implementing various kinds of CharStrings:
CFF dictionary data and Type1/Type2 CharStrings.
"""
__version__ = "1.0b1"
__author__ = "jvr"
import types
import struct
import string
t1OperandEncoding = [None] * 256
t1OperandEncoding[0:32] = (32) * ["do_operator"]
t1OperandEncoding[32:247] = (247 - 32) * ["read_byte"]
t1OperandEncoding[247:251] = (251 - 247) * ["read_smallInt1"]
t1OperandEncoding[251:255] = (255 - 251) * ["read_smallInt2"]
t1OperandEncoding[255] = "read_longInt"
assert len(t1OperandEncoding) == 256
t2OperandEncoding = t1OperandEncoding[:]
t2OperandEncoding[28] = "read_shortInt"
cffDictOperandEncoding = t2OperandEncoding[:]
cffDictOperandEncoding[29] = "read_longInt"
cffDictOperandEncoding[30] = "read_realNumber"
cffDictOperandEncoding[255] = "reserved"
realNibbles = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'.', 'E', 'E-', None, '-']
class ByteCodeDecompilerBase:
def read_byte(self, b0, data, index):
return b0 - 139, index
def read_smallInt1(self, b0, data, index):
b1 = ord(data[index])
return (b0-247)*256 + b1 + 108, index+1
def read_smallInt2(self, b0, data, index):
b1 = ord(data[index])
return -(b0-251)*256 - b1 - 108, index+1
def read_shortInt(self, b0, data, index):
bin = data[index] + data[index+1]
value, = struct.unpack(">h", bin)
return value, index+2
def read_longInt(self, b0, data, index):
bin = data[index] + data[index+1] + data[index+2] + data[index+3]
value, = struct.unpack(">l", bin)
return value, index+4
def read_realNumber(self, b0, data, index):
number = ''
while 1:
b = ord(data[index])
index = index + 1
nibble0 = (b & 0xf0) >> 4
nibble1 = b & 0x0f
if nibble0 == 0xf:
break
number = number + realNibbles[nibble0]
if nibble1 == 0xf:
break
number = number + realNibbles[nibble1]
return string.atof(number), index
def _buildOperatorDict(operatorList):
dict = {}
for item in operatorList:
if len(item) == 2:
dict[item[0]] = item[1]
else:
dict[item[0]] = item[1:]
return dict
t2Operators = [
# opcode name
(1, 'hstem'),
(3, 'vstem'),
(4, 'vmoveto'),
(5, 'rlineto'),
(6, 'hlineto'),
(7, 'vlineto'),
(8, 'rrcurveto'),
(10, 'callsubr'),
(11, 'return'),
(14, 'endchar'),
(16, 'blend'),
(18, 'hstemhm'),
(19, 'hintmask'),
(20, 'cntrmask'),
(21, 'rmoveto'),
(22, 'hmoveto'),
(23, 'vstemhm'),
(24, 'rcurveline'),
(25, 'rlinecurve'),
(26, 'vvcurveto'),
(27, 'hhcurveto'),
# (28, 'shortint'), # not really an operator
(29, 'callgsubr'),
(30, 'vhcurveto'),
(31, 'hvcurveto'),
((12, 3), 'and'),
((12, 4), 'or'),
((12, 5), 'not'),
((12, 8), 'store'),
((12, 9), 'abs'),
((12, 10), 'add'),
((12, 11), 'sub'),
((12, 12), 'div'),
((12, 13), 'load'),
((12, 14), 'neg'),
((12, 15), 'eq'),
((12, 18), 'drop'),
((12, 20), 'put'),
((12, 21), 'get'),
((12, 22), 'ifelse'),
((12, 23), 'random'),
((12, 24), 'mul'),
((12, 26), 'sqrt'),
((12, 27), 'dup'),
((12, 28), 'exch'),
((12, 29), 'index'),
((12, 30), 'roll'),
((12, 34), 'hflex'),
((12, 35), 'flex'),
((12, 36), 'hflex1'),
((12, 37), 'flex1'),
]
class T2CharString(ByteCodeDecompilerBase):
operandEncoding = t2OperandEncoding
operators = _buildOperatorDict(t2Operators)
def __init__(self, bytecode=None, program=None):
if program is None:
program = []
self.bytecode = bytecode
self.program = program
def __repr__(self):
if self.bytecode is None:
return "<%s (source) at %x>" % (self.__class__.__name__, id(self))
else:
return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self))
def needsDecompilation(self):
return self.bytecode is not None
def setProgram(self, program):
self.program = program
self.bytecode = None
def getToken(self, index,
len=len, ord=ord, getattr=getattr, type=type, StringType=types.StringType):
if self.bytecode is not None:
if index >= len(self.bytecode):
return None, 0, 0
b0 = ord(self.bytecode[index])
index = index + 1
code = self.operandEncoding[b0]
handler = getattr(self, code)
token, index = handler(b0, self.bytecode, index)
else:
if index >= len(self.program):
return None, 0, 0
token = self.program[index]
index = index + 1
isOperator = type(token) == StringType
return token, isOperator, index
def getBytes(self, index, nBytes):
if self.bytecode is not None:
newIndex = index + nBytes
bytes = self.bytecode[index:newIndex]
index = newIndex
else:
bytes = self.program[index]
index = index + 1
assert len(bytes) == nBytes
return bytes, index
def do_operator(self, b0, data, index):
if b0 == 12:
op = (b0, ord(data[index]))
index = index+1
else:
op = b0
operator = self.operators[op]
return operator, index
def toXML(self, xmlWriter):
from misc.textTools import num2binary
if self.bytecode is not None:
xmlWriter.dumphex(self.bytecode)
else:
index = 0
args = []
while 1:
token, isOperator, index = self.getToken(index)
if token is None:
break
if isOperator:
args = map(str, args)
if token in ('hintmask', 'cntrmask'):
hintMask, isOperator, index = self.getToken(index)
bits = []
for byte in hintMask:
bits.append(num2binary(ord(byte), 8))
hintMask = repr(string.join(bits, ""))
line = string.join(args + [token, hintMask], " ")
else:
line = string.join(args + [token], " ")
xmlWriter.write(line)
xmlWriter.newline()
args = []
else:
args.append(token)
t1Operators = [
# opcode name
(1, 'hstem'),
(3, 'vstem'),
(4, 'vmoveto'),
(5, 'rlineto'),
(6, 'hlineto'),
(7, 'vlineto'),
(8, 'rrcurveto'),
(9, 'closepath'),
(10, 'callsubr'),
(11, 'return'),
(13, 'hsbw'),
(14, 'endchar'),
(21, 'rmoveto'),
(22, 'hmoveto'),
(30, 'vhcurveto'),
(31, 'hvcurveto'),
((12, 0), 'dotsection'),
((12, 1), 'vstem3'),
((12, 2), 'hstem3'),
((12, 6), 'seac'),
((12, 7), 'sbw'),
((12, 12), 'div'),
((12, 16), 'callothersubr'),
((12, 17), 'pop'),
((12, 33), 'setcurrentpoint'),
]
class T1CharString(T2CharString):
operandEncoding = t1OperandEncoding
operators = _buildOperatorDict(t1Operators)
def decompile(self):
if hasattr(self, "program"):
return
program = []
index = 0
while 1:
token, isOperator, index = self.getToken(index)
if token is None:
break
program.append(token)
self.setProgram(program)
class SimpleT2Decompiler:
def __init__(self, localSubrs, globalSubrs):
self.localSubrs = localSubrs
self.localBias = calcSubrBias(localSubrs)
self.globalSubrs = globalSubrs
self.globalBias = calcSubrBias(globalSubrs)
self.reset()
def reset(self):
self.callingStack = []
self.operandStack = []
self.hintCount = 0
self.hintMaskBytes = 0
def execute(self, charString):
self.callingStack.append(charString)
needsDecompilation = charString.needsDecompilation()
if needsDecompilation:
program = []
pushToProgram = program.append
else:
pushToProgram = lambda x: None
pushToStack = self.operandStack.append
index = 0
while 1:
token, isOperator, index = charString.getToken(index)
if token is None:
break # we're done!
pushToProgram(token)
if isOperator:
handlerName = "op_" + token
if hasattr(self, handlerName):
handler = getattr(self, handlerName)
rv = handler(index)
if rv:
hintMaskBytes, index = rv
pushToProgram(hintMaskBytes)
else:
self.popall()
else:
pushToStack(token)
if needsDecompilation:
charString.setProgram(program)
assert program[-1] in ("endchar", "return", "callsubr", "callgsubr", "seac")
del self.callingStack[-1]
def pop(self):
value = self.operandStack[-1]
del self.operandStack[-1]
return value
def popall(self):
stack = self.operandStack[:]
self.operandStack[:] = []
return stack
def push(self, value):
self.operandStack.append(value)
def op_return(self, index):
if self.operandStack:
pass
def op_endchar(self, index):
pass
def op_callsubr(self, index):
subrIndex = self.pop()
subr = self.localSubrs[subrIndex+self.localBias]
self.execute(subr)
def op_callgsubr(self, index):
subrIndex = self.pop()
subr = self.globalSubrs[subrIndex+self.globalBias]
self.execute(subr)
def op_hstemhm(self, index):
self.countHints()
op_vstemhm = op_hstemhm
def op_hintmask(self, index):
if not self.hintMaskBytes:
self.countHints()
self.hintMaskBytes = (self.hintCount + 7) / 8
hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes)
return hintMaskBytes, index
op_cntrmask = op_hintmask
def countHints(self):
assert self.hintMaskBytes == 0
args = self.popall()
self.hintCount = self.hintCount + len(args) / 2
class T2OutlineExtractor(SimpleT2Decompiler):
def __init__(self, localSubrs, globalSubrs, nominalWidthX, defaultWidthX):
SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs)
self.nominalWidthX = nominalWidthX
self.defaultWidthX = defaultWidthX
def reset(self):
import Numeric
SimpleT2Decompiler.reset(self)
self.hints = []
self.gotWidth = 0
self.width = 0
self.currentPoint = Numeric.array((0, 0), Numeric.Int16)
self.contours = []
def getContours(self):
return self.contours
def newPath(self):
self.contours.append([[], [], 0])
def closePath(self):
if self.contours and self.contours[-1][2] == 0:
self.contours[-1][2] = 1
def appendPoint(self, point, isPrimary):
import Numeric
point = self.currentPoint + Numeric.array(point, Numeric.Int16)
self.currentPoint = point
points, flags, isClosed = self.contours[-1]
points.append(point)
flags.append(isPrimary)
def popallWidth(self, evenOdd=0):
args = self.popall()
if not self.gotWidth:
if evenOdd ^ (len(args) % 2):
self.width = self.nominalWidthX + args[0]
args = args[1:]
else:
self.width = self.defaultWidthX
self.gotWidth = 1
return args
def countHints(self):
assert self.hintMaskBytes == 0
args = self.popallWidth()
self.hintCount = self.hintCount + len(args) / 2
#
# hint operators
#
def op_hstem(self, index):
self.popallWidth() # XXX
def op_vstem(self, index):
self.popallWidth() # XXX
def op_hstemhm(self, index):
self.countHints()
#XXX
def op_vstemhm(self, index):
self.countHints()
#XXX
#def op_hintmask(self, index):
# self.countHints()
#def op_cntrmask(self, index):
# self.countHints()
#
# path constructors, moveto
#
def op_rmoveto(self, index):
self.closePath()
self.newPath()
self.appendPoint(self.popallWidth(), 1)
def op_hmoveto(self, index):
self.closePath()
self.newPath()
self.appendPoint((self.popallWidth(1)[0], 0), 1)
def op_vmoveto(self, index):
self.closePath()
self.newPath()
self.appendPoint((0, self.popallWidth(1)[0]), 1)
def op_endchar(self, index):
self.closePath()
#
# path constructors, lines
#
def op_rlineto(self, index):
args = self.popall()
for i in range(0, len(args), 2):
point = args[i:i+2]
self.appendPoint(point, 1)
def op_hlineto(self, index):
self.alternatingLineto(1)
def op_vlineto(self, index):
self.alternatingLineto(0)
#
# path constructors, curves
#
def op_rrcurveto(self, index):
"""{dxa dya dxb dyb dxc dyc}+ rrcurveto"""
args = self.popall()
for i in range(0, len(args), 6):
dxa, dya, dxb, dyb, dxc, dyc, = args[i:i+6]
self.rrcurveto((dxa, dya), (dxb, dyb), (dxc, dyc))
def op_rcurveline(self, index):
"""{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline"""
args = self.popall()
for i in range(0, len(args)-2, 6):
dxb, dyb, dxc, dyc, dxd, dyd = args[i:i+6]
self.rrcurveto((dxb, dyb), (dxc, dyc), (dxd, dyd))
self.appendPoint(args[-2:], 1)
def op_rlinecurve(self, index):
"""{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve"""
args = self.popall()
lineArgs = args[:-6]
for i in range(0, len(lineArgs), 2):
self.appendPoint(lineArgs[i:i+2], 1)
dxb, dyb, dxc, dyc, dxd, dyd = args[-6:]
self.rrcurveto((dxb, dyb), (dxc, dyc), (dxd, dyd))
def op_vvcurveto(self, index):
"dx1? {dya dxb dyb dyc}+ vvcurveto"
args = self.popall()
if len(args) % 2:
dx1 = args[0]
args = args[1:]
else:
dx1 = 0
for i in range(0, len(args), 4):
dya, dxb, dyb, dyc = args[i:i+4]
self.rrcurveto((dx1, dya), (dxb, dyb), (0, dyc))
dx1 = 0
def op_hhcurveto(self, index):
"""dy1? {dxa dxb dyb dxc}+ hhcurveto"""
args = self.popall()
if len(args) % 2:
dy1 = args[0]
args = args[1:]
else:
dy1 = 0
for i in range(0, len(args), 4):
dxa, dxb, dyb, dxc = args[i:i+4]
self.rrcurveto((dxa, dy1), (dxb, dyb), (dxc, 0))
dy1 = 0
def op_vhcurveto(self, index):
"""dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30)
{dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto
"""
args = self.popall()
while args:
args = self.vcurveto(args)
if args:
args = self.hcurveto(args)
def op_hvcurveto(self, index):
"""dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
{dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
"""
args = self.popall()
while args:
args = self.hcurveto(args)
if args:
args = self.vcurveto(args)
#
# path constructors, flex
#
def op_hflex(self, index):
XXX
def op_flex(self, index):
XXX
def op_hflex1(self, index):
XXX
def op_flex1(self, index):
XXX
#
# MultipleMaster. Well...
#
def op_blend(self, index):
XXX
# misc
def op_and(self, index):
XXX
def op_or(self, index):
XXX
def op_not(self, index):
XXX
def op_store(self, index):
XXX
def op_abs(self, index):
XXX
def op_add(self, index):
XXX
def op_sub(self, index):
XXX
def op_div(self, index):
num2 = self.pop()
num1 = self.pop()
d1 = num1/num2
d2 = float(num1)/num2
if d1 == d2:
self.push(d1)
else:
self.push(d2)
def op_load(self, index):
XXX
def op_neg(self, index):
XXX
def op_eq(self, index):
XXX
def op_drop(self, index):
XXX
def op_put(self, index):
XXX
def op_get(self, index):
XXX
def op_ifelse(self, index):
XXX
def op_random(self, index):
XXX
def op_mul(self, index):
XXX
def op_sqrt(self, index):
XXX
def op_dup(self, index):
XXX
def op_exch(self, index):
XXX
def op_index(self, index):
XXX
def op_roll(self, index):
XXX
#
# miscelaneous helpers
#
def alternatingLineto(self, isHorizontal):
args = self.popall()
for arg in args:
if isHorizontal:
point = (arg, 0)
else:
point = (0, arg)
self.appendPoint(point, 1)
isHorizontal = not isHorizontal
def rrcurveto(self, p1, p2, p3):
self.appendPoint(p1, 0)
self.appendPoint(p2, 0)
self.appendPoint(p3, 1)
def vcurveto(self, args):
dya, dxb, dyb, dxc = args[:4]
args = args[4:]
if len(args) == 1:
dyc = args[0]
args = []
else:
dyc = 0
self.rrcurveto((0, dya), (dxb, dyb), (dxc, dyc))
return args
def hcurveto(self, args):
dxa, dxb, dyb, dyc = args[:4]
args = args[4:]
if len(args) == 1:
dxc = args[0]
args = []
else:
dxc = 0
self.rrcurveto((dxa, 0), (dxb, dyb), (dxc, dyc))
return args
class T1OutlineExtractor(T2OutlineExtractor):
def __init__(self, subrs):
self.subrs = subrs
self.reset()
def reset(self):
self.flexing = 0
self.width = 0
self.sbx = 0
T2OutlineExtractor.reset(self)
def popallWidth(self, evenOdd=0):
return self.popall()
def exch(self):
stack = self.operandStack
stack[-1], stack[-2] = stack[-2], stack[-1]
#
# path constructors
#
def op_rmoveto(self, index):
if self.flexing:
return
self.newPath()
self.appendPoint(self.popall(), 1)
def op_hmoveto(self, index):
if self.flexing:
# We must add a parameter to the stack if we are flexing
self.push(0)
return
self.newPath()
self.appendPoint((self.popall()[0], 0), 1)
def op_vmoveto(self, index):
if self.flexing:
# We must add a parameter to the stack if we are flexing
self.push(0)
self.exch()
return
self.newPath()
self.appendPoint((0, self.popall()[0]), 1)
def op_closepath(self, index):
self.closePath()
def op_setcurrentpoint(self, index):
args = self.popall()
x, y = args
self.currentPoint[0] = x
self.currentPoint[1] = y
def op_endchar(self, index):
self.closePath()
def op_hsbw(self, index):
sbx, wx = self.popall()
self.width = wx
self.sbx = sbx
self.currentPoint[0] = sbx
def op_sbw(self, index):
self.popall() # XXX
#
def op_callsubr(self, index):
subrIndex = self.pop()
subr = self.subrs[subrIndex]
self.execute(subr)
def op_callothersubr(self, index):
subrIndex = self.pop()
nArgs = self.pop()
#print nArgs, subrIndex, "callothersubr"
if subrIndex == 0 and nArgs == 3:
self.doFlex()
self.flexing = 0
elif subrIndex == 1 and nArgs == 0:
self.flexing = 1
# ignore...
def op_pop(self, index):
pass # ignore...
def doFlex(self):
finaly = self.pop()
finalx = self.pop()
self.pop() # flex height is unused
p3y = self.pop()
p3x = self.pop()
bcp4y = self.pop()
bcp4x = self.pop()
bcp3y = self.pop()
bcp3x = self.pop()
p2y = self.pop()
p2x = self.pop()
bcp2y = self.pop()
bcp2x = self.pop()
bcp1y = self.pop()
bcp1x = self.pop()
rpy = self.pop()
rpx = self.pop()
# call rrcurveto
self.push(bcp1x+rpx)
self.push(bcp1y+rpy)
self.push(bcp2x)
self.push(bcp2y)
self.push(p2x)
self.push(p2y)
self.op_rrcurveto(None)
# call rrcurveto
self.push(bcp3x)
self.push(bcp3y)
self.push(bcp4x)
self.push(bcp4y)
self.push(p3x)
self.push(p3y)
self.op_rrcurveto(None)
# Push back final coords so subr 0 can find them
self.push(finalx)
self.push(finaly)
def op_dotsection(self, index):
self.popall() # XXX
def op_hstem3(self, index):
self.popall() # XXX
def op_seac(self, index):
"asb adx ady bchar achar seac"
asb, adx, ady, bchar, achar = self.popall() # XXX
self.contours.append([(asb, adx, ady, bchar, achar), None, -1])
def op_vstem3(self, index):
self.popall() # XXX
class DictDecompiler(ByteCodeDecompilerBase):
operandEncoding = cffDictOperandEncoding
dictDefaults = {}
def __init__(self, strings):
self.stack = []
self.strings = strings
self.dict = {}
def getDict(self):
assert len(self.stack) == 0, "non-empty stack"
return self.dict
def decompile(self, data):
index = 0
lenData = len(data)
push = self.stack.append
while index < lenData:
b0 = ord(data[index])
index = index + 1
code = self.operandEncoding[b0]
handler = getattr(self, code)
value, index = handler(b0, data, index)
if value is not None:
push(value)
def pop(self):
value = self.stack[-1]
del self.stack[-1]
return value
def popall(self):
all = self.stack[:]
del self.stack[:]
return all
def do_operator(self, b0, data, index):
if b0 == 12:
op = (b0, ord(data[index]))
index = index+1
else:
op = b0
operator, argType = self.operators[op]
self.handle_operator(operator, argType)
return None, index
def handle_operator(self, operator, argType):
if type(argType) == type(()):
value = ()
for arg in argType:
arghandler = getattr(self, "arg_" + arg)
value = (arghandler(operator),) + value
else:
arghandler = getattr(self, "arg_" + argType)
value = arghandler(operator)
self.dict[operator] = value
def arg_number(self, name):
return self.pop()
def arg_SID(self, name):
return self.strings[self.pop()]
def arg_array(self, name):
return self.popall()
topDictOperators = [
# opcode name argument type
(0, 'version', 'SID'),
(1, 'Notice', 'SID'),
(2, 'FullName', 'SID'),
(3, 'FamilyName', 'SID'),
(4, 'Weight', 'SID'),
(5, 'FontBBox', 'array'),
(13, 'UniqueID', 'number'),
(14, 'XUID', 'array'),
(15, 'charset', 'number'),
(16, 'Encoding', 'number'),
(17, 'CharStrings', 'number'),
(18, 'Private', ('number', 'number')),
((12, 0), 'Copyright', 'SID'),
((12, 1), 'isFixedPitch', 'number'),
((12, 2), 'ItalicAngle', 'number'),
((12, 3), 'UnderlinePosition', 'number'),
((12, 4), 'UnderlineThickness', 'number'),
((12, 5), 'PaintType', 'number'),
((12, 6), 'CharstringType', 'number'),
((12, 7), 'FontMatrix', 'array'),
((12, 8), 'StrokeWidth', 'number'),
((12, 20), 'SyntheticBase', 'number'),
((12, 21), 'PostScript', 'SID'),
((12, 22), 'BaseFontName', 'SID'),
# CID additions
((12, 30), 'ROS', ('SID', 'SID', 'number')),
((12, 31), 'CIDFontVersion', 'number'),
((12, 32), 'CIDFontRevision', 'number'),
((12, 33), 'CIDFontType', 'number'),
((12, 34), 'CIDCount', 'number'),
((12, 35), 'UIDBase', 'number'),
((12, 36), 'FDArray', 'number'),
((12, 37), 'FDSelect', 'number'),
((12, 38), 'FontName', 'SID'),
# MM, Chameleon. Pft.
]
topDictDefaults = {
'isFixedPitch': 0,
'ItalicAngle': 0,
'UnderlineThickness': 50,
'PaintType': 0,
'CharstringType': 2,
'FontMatrix': [0.001, 0, 0, 0.001, 0, 0],
'FontBBox': [0, 0, 0, 0],
'StrokeWidth': 0,
'charset': 0,
'Encoding': 0,
# CID defaults
'CIDFontVersion': 0,
'CIDFontRevision': 0,
'CIDFontType': 0,
'CIDCount': 8720,
}
class TopDictDecompiler(DictDecompiler):
operators = _buildOperatorDict(topDictOperators)
dictDefaults = topDictDefaults
privateDictOperators = [
# opcode name argument type
(6, 'BlueValues', 'array'),
(7, 'OtherBlues', 'array'),
(8, 'FamilyBlues', 'array'),
(9, 'FamilyOtherBlues', 'array'),
(10, 'StdHW', 'number'),
(11, 'StdVW', 'number'),
(19, 'Subrs', 'number'),
(20, 'defaultWidthX', 'number'),
(21, 'nominalWidthX', 'number'),
((12, 9), 'BlueScale', 'number'),
((12, 10), 'BlueShift', 'number'),
((12, 11), 'BlueFuzz', 'number'),
((12, 12), 'StemSnapH', 'array'),
((12, 13), 'StemSnapV', 'array'),
((12, 14), 'ForceBold', 'number'),
((12, 15), 'ForceBoldThreshold', 'number'),
((12, 16), 'lenIV', 'number'),
((12, 17), 'LanguageGroup', 'number'),
((12, 18), 'ExpansionFactor', 'number'),
((12, 19), 'initialRandomSeed', 'number'),
]
privateDictDefaults = {
'defaultWidthX': 0,
'nominalWidthX': 0,
'BlueScale': 0.039625,
'BlueShift': 7,
'BlueFuzz': 1,
'ForceBold': 0,
'ForceBoldThreshold': 0,
'lenIV': -1,
'LanguageGroup': 0,
'ExpansionFactor': 0.06,
'initialRandomSeed': 0,
}
class PrivateDictDecompiler(DictDecompiler):
operators = _buildOperatorDict(privateDictOperators)
dictDefaults = privateDictDefaults
def calcSubrBias(subrs):
nSubrs = len(subrs)
if nSubrs < 1240:
bias = 107
elif nSubrs < 33900:
bias = 1131
else:
bias = 32768
return bias