Make the graph generic over whether it's sync/async

This commit is contained in:
Shadowfacts 2024-10-30 23:32:45 -04:00
parent 81cd986f77
commit 1530933464
2 changed files with 367 additions and 100 deletions

View File

@ -7,3 +7,6 @@ edition = "2021"
[dependencies]
petgraph = "0.6.5"
[dev-dependencies]
tokio = { version = "1.41.0", features = ["rt", "macros"] }

View File

@ -1,24 +1,117 @@
#![feature(let_chains)]
#![feature(async_closure)]
mod util;
use petgraph::visit::{IntoEdgeReferences, NodeIndexable};
use petgraph::{graph::NodeIndex, stable_graph::StableDiGraph, visit::EdgeRef};
use std::cell::{Cell, RefCell};
use std::any::Any;
use std::cell::{Cell, Ref, RefCell, RefMut};
use std::collections::HashMap;
use std::collections::VecDeque;
use std::future::Future;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::rc::Rc;
use std::{any::Any, collections::VecDeque};
type NodeGraph = StableDiGraph<ErasedNode, (), u32>;
// TODO: consider using a struct for this, because generic bounds of type aliases aren't enforced
type NodeGraph<S: Synchronicity> = StableDiGraph<ErasedNode<S>, (), u32>;
pub struct Graph<Output> {
// we treat this as a StableGraph, since nodes are never removed
node_graph: Rc<RefCell<NodeGraph>>,
pub trait Synchronicity: 'static {
type AnyStorage;
fn make_any_storage<T: Any>(value: T) -> Self::AnyStorage;
fn unbox_any_storage<T: 'static>(storage: &Self::AnyStorage) -> impl Deref<Target = T>;
fn unbox_any_storage_mut<T: 'static>(
storage: &mut Self::AnyStorage,
) -> impl DerefMut<Target = T>;
type UpdateFn;
fn make_update_fn<V: 'static>() -> Self::UpdateFn;
type UpdateResult<'a>;
fn make_update_result<'a>() -> Self::UpdateResult<'a>;
}
pub enum Synchronous {}
impl Synchronicity for Synchronous {
type AnyStorage = Box<dyn Any>;
fn make_any_storage<T: Any>(value: T) -> Self::AnyStorage {
Box::new(value)
}
fn unbox_any_storage<T: 'static>(storage: &Self::AnyStorage) -> impl Deref<Target = T> {
storage.downcast_ref().unwrap()
}
fn unbox_any_storage_mut<T: 'static>(
storage: &mut Self::AnyStorage,
) -> impl DerefMut<Target = T> {
storage.downcast_mut().unwrap()
}
type UpdateFn = Box<dyn Fn(&mut Box<dyn Any>) -> ()>;
fn make_update_fn<V: 'static>() -> Self::UpdateFn {
Box::new(|any| {
let x = any.downcast_mut::<Box<dyn Node<V, Self>>>().unwrap();
x.update();
})
}
type UpdateResult<'a> = ();
fn make_update_result<'a>() -> Self::UpdateResult<'a> {}
}
pub enum Asynchronous {}
impl Synchronicity for Asynchronous {
type AnyStorage = Rc<RefCell<Box<dyn Any>>>;
fn make_any_storage<T: Any>(value: T) -> Self::AnyStorage {
Rc::new(RefCell::new(Box::new(value)))
}
fn unbox_any_storage<T: 'static>(storage: &Self::AnyStorage) -> impl Deref<Target = T> {
Ref::map(storage.borrow(), |any| any.downcast_ref().unwrap())
}
fn unbox_any_storage_mut<T: 'static>(
storage: &mut Self::AnyStorage,
) -> impl DerefMut<Target = T> {
RefMut::map(storage.borrow_mut(), |any| any.downcast_mut().unwrap())
}
type UpdateFn = Box<dyn Fn(Rc<RefCell<Box<dyn Any>>>) -> Pin<Box<dyn Future<Output = ()>>>>;
fn make_update_fn<V: 'static>() -> Self::UpdateFn {
Box::new(|any| Box::pin(Asynchronous::do_async_update::<V>(any)))
}
type UpdateResult<'a> = Pin<Box<dyn Future<Output = ()> + 'a>>;
fn make_update_result<'a>() -> Self::UpdateResult<'a> {
Box::pin(std::future::ready(()))
}
}
impl Asynchronous {
async fn do_async_update<V: 'static>(any: Rc<RefCell<Box<dyn Any>>>) {
let mut any_ = any.borrow_mut();
let x = any_.downcast_mut::<Box<dyn Node<V, Self>>>().unwrap();
x.update().await;
}
}
pub struct Graph<Output, Synch: Synchronicity> {
node_graph: Rc<RefCell<NodeGraph<Synch>>>,
output: Option<NodeIndex<u32>>,
output_type: std::marker::PhantomData<Output>,
}
impl<Output: Clone + 'static> Graph<Output> {
impl<Output: Clone + 'static> Graph<Output, Synchronous> {
pub fn new() -> Self {
Self {
node_graph: Rc::new(RefCell::new(StableDiGraph::new())),
@ -26,13 +119,25 @@ impl<Output: Clone + 'static> Graph<Output> {
output_type: std::marker::PhantomData,
}
}
}
pub fn set_output<R: Rule<Output> + 'static>(&mut self, rule: R) {
impl<Output: Clone + 'static> Graph<Output, Asynchronous> {
pub fn new_async() -> Self {
Self {
node_graph: Rc::new(RefCell::new(StableDiGraph::new())),
output: None,
output_type: std::marker::PhantomData,
}
}
}
impl<O: Clone + 'static, S: Synchronicity> Graph<O, S> {
pub fn set_output<R: Rule<O> + 'static>(&mut self, rule: R) {
let input = self.add_rule(rule);
self.output = Some(input.node_idx);
}
fn add_node<V: Clone + 'static>(&mut self, node: impl Node<V> + 'static) -> Input<V> {
fn add_node<V: Clone + 'static>(&mut self, node: impl Node<V, S> + 'static) -> Input<V> {
let value = node.value_rc();
let erased = ErasedNode::new(node);
let idx = self.node_graph.borrow_mut().add_node(erased);
@ -43,7 +148,7 @@ impl<Output: Clone + 'static> Graph<Output> {
}
pub fn add_value<V: Clone + 'static>(&mut self, value: V) -> Input<V> {
return self.add_node(ConstNode(value.clone()));
return self.add_node(ConstNode::new(value.clone()));
}
pub fn add_rule<R: Rule<V> + 'static, V: Clone + 'static>(&mut self, rule: R) -> Input<V> {
@ -54,7 +159,7 @@ impl<Output: Clone + 'static> Graph<Output> {
where
R: Rule<V> + 'static,
V: Clone + 'static,
F: FnMut(InvalidationSignal) -> R,
F: FnMut(InvalidationSignal<S>) -> R,
{
let node_idx = Rc::new(Cell::new(None));
let signal = InvalidationSignal {
@ -66,7 +171,7 @@ impl<Output: Clone + 'static> Graph<Output> {
input
}
pub fn freeze(self) -> Result<FrozenGraph<Output>, GraphFreezeError> {
pub fn freeze(self) -> Result<FrozenGraph<O, S>, GraphFreezeError> {
let output: NodeIndex<u32> = match self.output {
None => return Err(GraphFreezeError::NoOutput),
Some(idx) => idx,
@ -78,7 +183,7 @@ impl<Output: Clone + 'static> Graph<Output> {
let mut edges = vec![];
for idx in indices {
let node = &mut self.node_graph.borrow_mut()[idx];
(node.visit_inputs)(&mut node.any, &mut |input_idx| {
node.visit_inputs(&mut |input_idx| {
edges.push((input_idx, idx));
});
}
@ -108,57 +213,53 @@ impl<Output: Clone + 'static> Graph<Output> {
}
}
impl<O: Clone + 'static> Graph<O, Asynchronous> {
pub fn set_async_output<R: AsyncRule<O> + 'static>(&mut self, rule: R) {
let input = self.add_async_rule(rule);
self.output = Some(input.node_idx);
}
pub fn add_async_rule<R: AsyncRule<V> + 'static, V: Clone + 'static>(
&mut self,
rule: R,
) -> Input<V> {
self.add_node(AsyncRuleNode::new(rule))
}
pub fn add_invalidatable_async_rule<R, V, F>(&mut self, mut f: F) -> Input<V>
where
R: AsyncRule<V> + 'static,
V: Clone + 'static,
F: FnMut(InvalidationSignal<Asynchronous>) -> R,
{
let node_idx = Rc::new(Cell::new(None));
let signal = InvalidationSignal {
node_idx: Rc::clone(&node_idx),
graph: Rc::clone(&self.node_graph),
};
let input = self.add_async_rule(f(signal));
node_idx.set(Some(input.node_idx));
input
}
}
#[derive(Debug)]
pub enum GraphFreezeError {
NoOutput,
Cyclic(Vec<NodeIndex<u32>>),
}
pub struct FrozenGraph<Output> {
node_graph: Rc<RefCell<NodeGraph>>,
pub struct FrozenGraph<Output, Synch: Synchronicity> {
node_graph: Rc<RefCell<NodeGraph<Synch>>>,
output: NodeIndex<u32>,
output_type: std::marker::PhantomData<Output>,
}
impl<Output: Clone + 'static> FrozenGraph<Output> {
fn update_node(&mut self, idx: NodeIndex<u32>) {
let graph = self.node_graph.borrow();
let node = &graph[idx];
let is_valid = (node.is_valid)(&node.any);
drop(graph);
if !is_valid {
// collect all the edges into a vec so that we can mutably borrow the graph to update the nodes
let edge_sources = self
.node_graph
.borrow()
.edges_directed(idx, petgraph::Direction::Incoming)
.map(|edge| edge.source())
.collect::<Vec<_>>();
// Update the dependencies of this node.
// TODO: iterating/recursing here seems less than efficient
// instead, in evaluate, topo sort the graph and update invalid nodes?
for source in edge_sources {
self.update_node(source);
}
let node = &mut self.node_graph.borrow_mut()[idx];
// Actually update the node's value.
(node.update)(&mut node.any);
}
}
impl<O: Clone + 'static, S: Synchronicity> FrozenGraph<O, S> {
pub fn is_output_valid(&self) -> bool {
let graph = self.node_graph.borrow();
let node = &graph[self.output];
(node.is_valid)(&node.any)
}
pub fn evaluate(&mut self) -> Output {
self.update_node(self.output);
let graph = self.node_graph.borrow();
let node = &graph[self.output].expect_type::<Output>();
node.value_rc().borrow().clone().unwrap()
node.is_valid()
}
pub fn node_count(&self) -> usize {
@ -167,7 +268,7 @@ impl<Output: Clone + 'static> FrozenGraph<Output> {
pub fn modify<F>(&mut self, mut f: F) -> Result<(), GraphFreezeError>
where
F: FnMut(&mut Graph<Output>) -> (),
F: FnMut(&mut Graph<O, S>) -> (),
{
// Copy all the current edges so we can check if any change.
let graph = self.node_graph.borrow();
@ -206,12 +307,74 @@ impl<Output: Clone + 'static> FrozenGraph<Output> {
to_invalidate.push_back(edge.target());
}
}
invalidate_nodes(&mut graph, to_invalidate);
invalidate_nodes::<S>(&mut graph, to_invalidate);
Ok(())
}
}
impl<Output: Clone + 'static> FrozenGraph<Output, Synchronous> {
fn update_node(&mut self, idx: NodeIndex<u32>) {
let graph = self.node_graph.borrow();
let node = &graph[idx];
if !node.is_valid() {
// collect all the edges into a vec so that we can mutably borrow the graph to update the nodes
let edge_sources = graph
.edges_directed(idx, petgraph::Direction::Incoming)
.map(|edge| edge.source())
.collect::<Vec<_>>();
drop(graph);
// Update the dependencies of this node.
// TODO: iterating/recursing here seems less than efficient
// instead, in evaluate, topo sort the graph and update invalid nodes?
for source in edge_sources {
self.update_node(source);
}
let node = &mut self.node_graph.borrow_mut()[idx];
// Actually update the node's value.
(node.update)(&mut node.any);
}
}
pub fn evaluate(&mut self) -> Output {
self.update_node(self.output);
let graph = self.node_graph.borrow();
let node = &graph[self.output].expect_type::<Output>();
node.value_rc().borrow().clone().unwrap()
}
}
impl<Output: Clone + 'static> FrozenGraph<Output, Asynchronous> {
async fn update_node_async(&mut self, idx: NodeIndex<u32>) {
// TODO: same note about recursing as above, and consider doing this in parallel
let graph = self.node_graph.borrow();
let node = &graph[idx];
if !node.is_valid() {
let edge_sources = graph
.edges_directed(idx, petgraph::Direction::Incoming)
.map(|edge| edge.source())
.collect::<Vec<_>>();
drop(graph);
for source in edge_sources {
Box::pin(self.update_node_async(source)).await;
}
let node = &self.node_graph.borrow()[idx];
(node.update)(Rc::clone(&node.any)).await;
}
}
pub async fn evaluate_async(&mut self) -> Output {
self.update_node_async(self.output).await;
let graph = self.node_graph.borrow();
let node = &graph[self.output].expect_type::<Output>();
node.value_rc().borrow().clone().unwrap()
}
}
#[derive(Clone, Debug)]
pub struct Input<T> {
node_idx: NodeIndex<u32>,
@ -219,7 +382,7 @@ pub struct Input<T> {
}
impl<T: Clone + 'static> Input<T> {
fn value(&self) -> T {
pub fn value(&self) -> T {
self.value
.as_ref()
.borrow()
@ -229,24 +392,27 @@ impl<T: Clone + 'static> Input<T> {
}
// TODO: there's a lot happening here, make sure this doesn't create a reference cycle
pub struct InvalidationSignal {
pub struct InvalidationSignal<Synch: Synchronicity> {
node_idx: Rc<Cell<Option<NodeIndex<u32>>>>,
graph: Rc<RefCell<NodeGraph>>,
graph: Rc<RefCell<NodeGraph<Synch>>>,
}
impl InvalidationSignal {
impl<S: Synchronicity> InvalidationSignal<S> {
pub fn invalidate(&self) {
let mut queue = VecDeque::new();
queue.push_back(self.node_idx.get().unwrap());
invalidate_nodes(&mut *self.graph.borrow_mut(), queue);
invalidate_nodes::<S>(&mut *self.graph.borrow_mut(), queue);
}
}
fn invalidate_nodes(graph: &mut NodeGraph, mut queue: VecDeque<NodeIndex<u32>>) {
fn invalidate_nodes<S: Synchronicity>(
graph: &mut NodeGraph<S>,
mut queue: VecDeque<NodeIndex<u32>>,
) {
while let Some(idx) = queue.pop_front() {
let node = &mut graph[idx];
if (node.is_valid)(&node.any) {
(node.invalidate)(&mut node.any);
if node.is_valid() {
node.invalidate();
let dependents = graph
.edges_directed(idx, petgraph::Direction::Outgoing)
.map(|edge| edge.target());
@ -257,62 +423,74 @@ fn invalidate_nodes(graph: &mut NodeGraph, mut queue: VecDeque<NodeIndex<u32>>)
// TODO: i really want Input to be able to implement Deref somehow
struct ErasedNode {
any: Box<dyn Any>,
is_valid: Box<dyn Fn(&Box<dyn Any>) -> bool>,
invalidate: Box<dyn Fn(&mut Box<dyn Any>) -> ()>,
visit_inputs: Box<dyn Fn(&mut Box<dyn Any>, &mut dyn FnMut(NodeIndex<u32>) -> ()) -> ()>,
update: Box<dyn Fn(&mut Box<dyn Any>) -> ()>,
pub struct ErasedNode<Synch: Synchronicity> {
any: Synch::AnyStorage,
is_valid: Box<dyn Fn(&Synch::AnyStorage) -> bool>,
invalidate: Box<dyn Fn(&mut Synch::AnyStorage) -> ()>,
visit_inputs: Box<dyn Fn(&mut Synch::AnyStorage, &mut dyn FnMut(NodeIndex<u32>) -> ()) -> ()>,
update: Synch::UpdateFn,
}
impl ErasedNode {
fn new<N: Node<V> + 'static, V: 'static>(base: N) -> Self {
impl<S: Synchronicity> ErasedNode<S> {
fn new<N: Node<V, S> + 'static, V: 'static>(base: N) -> Self {
// i don't love the double boxing, but i'm not sure how else to do this
let thing: Box<dyn Node<V>> = Box::new(base);
let any: Box<dyn Any> = Box::new(thing);
let thing: Box<dyn Node<V, S>> = Box::new(base);
Self {
any,
any: S::make_any_storage(thing),
is_valid: Box::new(|any| {
let x = any.downcast_ref::<Box<dyn Node<V>>>().unwrap();
let x = S::unbox_any_storage::<Box<dyn Node<V, S>>>(any);
x.is_valid()
}),
invalidate: Box::new(|any| {
let x = any.downcast_mut::<Box<dyn Node<V>>>().unwrap();
let mut x = S::unbox_any_storage_mut::<Box<dyn Node<V, S>>>(any);
x.invalidate();
}),
visit_inputs: Box::new(|any, visitor| {
let x = any.downcast_mut::<Box<dyn Node<V>>>().unwrap();
let mut x = S::unbox_any_storage_mut::<Box<dyn Node<V, S>>>(any);
x.visit_inputs(visitor);
}),
update: Box::new(|any| {
let x = any.downcast_mut::<Box<dyn Node<V>>>().unwrap();
x.update();
}),
update: S::make_update_fn::<V>(),
}
}
// TODO: revisit if these are necessary
fn expect_type<'a, V: 'static>(&'a self) -> &'a dyn Node<V> {
let res = self
.any
.downcast_ref::<Box<dyn Node<V>>>()
.expect("matching node type");
res.as_ref()
fn expect_type<'a, V: 'static>(&'a self) -> impl Deref<Target = Box<dyn Node<V, S>>> + 'a {
S::unbox_any_storage::<Box<dyn Node<V, S>>>(&self.any)
}
fn is_valid(&self) -> bool {
(self.is_valid)(&self.any)
}
fn invalidate(&mut self) {
(self.invalidate)(&mut self.any);
}
fn visit_inputs(&mut self, f: &mut dyn FnMut(NodeIndex<u32>) -> ()) {
(self.visit_inputs)(&mut self.any, f);
}
}
trait Node<Value> {
trait Node<Value: 'static, Synch: Synchronicity> {
fn is_valid(&self) -> bool;
fn invalidate(&mut self);
fn visit_inputs(&mut self, visitor: &mut dyn FnMut(NodeIndex<u32>) -> ());
fn update(&mut self);
// TODO: are these both necessary?
fn update(&mut self) -> Synch::UpdateResult<'_>;
fn value_rc(&self) -> Rc<RefCell<Option<Value>>>;
}
struct ConstNode<V>(V);
struct ConstNode<V, S> {
value: V,
synchronicity: std::marker::PhantomData<S>,
}
impl<V: Clone + 'static> Node<V> for ConstNode<V> {
impl<V, S> ConstNode<V, S> {
fn new(value: V) -> Self {
Self {
value,
synchronicity: std::marker::PhantomData,
}
}
}
impl<V: Clone + 'static, S: Synchronicity> Node<V, S> for ConstNode<V, S> {
fn is_valid(&self) -> bool {
true
}
@ -321,30 +499,34 @@ impl<V: Clone + 'static> Node<V> for ConstNode<V> {
fn visit_inputs(&mut self, _visitor: &mut dyn FnMut(NodeIndex<u32>) -> ()) {}
fn update(&mut self) {}
fn update(&mut self) -> <S as Synchronicity>::UpdateResult<'_> {
unreachable!()
}
fn value_rc(&self) -> Rc<RefCell<Option<V>>> {
Rc::new(RefCell::new(Some(self.0.clone())))
Rc::new(RefCell::new(Some(self.value.clone())))
}
}
struct RuleNode<R, V> {
struct RuleNode<R, V, S> {
rule: R,
value: Rc<RefCell<Option<V>>>,
valid: bool,
synchronicity: std::marker::PhantomData<S>,
}
impl<R: Rule<V>, V> RuleNode<R, V> {
impl<R: Rule<V>, V, S> RuleNode<R, V, S> {
fn new(rule: R) -> Self {
Self {
rule,
value: Rc::new(RefCell::new(None)),
valid: false,
synchronicity: std::marker::PhantomData,
}
}
}
impl<R: Rule<V> + 'static, V: Clone + 'static> Node<V> for RuleNode<R, V> {
impl<R: Rule<V> + 'static, V: Clone + 'static, S: Synchronicity> Node<V, S> for RuleNode<R, V, S> {
fn is_valid(&self) -> bool {
self.valid
}
@ -363,10 +545,11 @@ impl<R: Rule<V> + 'static, V: Clone + 'static> Node<V> for RuleNode<R, V> {
self.rule.visit_inputs(&mut InputIndexVisitor(visitor));
}
fn update(&mut self) {
self.valid = true;
fn update(&mut self) -> <S as Synchronicity>::UpdateResult<'_> {
let new_value = self.rule.evaluate();
self.valid = true;
*self.value.borrow_mut() = Some(new_value);
S::make_update_result()
}
fn value_rc(&self) -> Rc<RefCell<Option<V>>> {
@ -374,12 +557,70 @@ impl<R: Rule<V> + 'static, V: Clone + 'static> Node<V> for RuleNode<R, V> {
}
}
struct AsyncRuleNode<R, V> {
rule: R,
value: Rc<RefCell<Option<V>>>,
valid: bool,
}
impl<R: AsyncRule<V>, V> AsyncRuleNode<R, V> {
fn new(rule: R) -> Self {
Self {
rule,
value: Rc::new(RefCell::new(None)),
valid: false,
}
}
}
impl<R: AsyncRule<V> + 'static, V: Clone + 'static> Node<V, Asynchronous> for AsyncRuleNode<R, V> {
fn is_valid(&self) -> bool {
self.valid
}
fn invalidate(&mut self) {
self.valid = false;
}
fn visit_inputs(&mut self, visitor: &mut dyn FnMut(NodeIndex<u32>) -> ()) {
struct InputIndexVisitor<'a>(&'a mut dyn FnMut(NodeIndex<u32>) -> ());
impl<'a> InputVisitor for InputIndexVisitor<'a> {
fn visit<T>(&mut self, input: &mut Input<T>) {
self.0(input.node_idx);
}
}
self.rule.visit_inputs(&mut InputIndexVisitor(visitor));
}
fn update(&mut self) -> <Asynchronous as Synchronicity>::UpdateResult<'_> {
Box::pin(self.do_update())
}
fn value_rc(&self) -> Rc<RefCell<Option<V>>> {
Rc::clone(&self.value)
}
}
impl<R: AsyncRule<V>, V> AsyncRuleNode<R, V> {
async fn do_update(&mut self) {
let new_value = self.rule.evaluate().await;
self.valid = true;
*self.value.borrow_mut() = Some(new_value);
}
}
pub trait Rule<Output> {
fn visit_inputs(&mut self, visitor: &mut impl InputVisitor);
fn evaluate(&mut self) -> Output;
}
pub trait AsyncRule<Output> {
fn visit_inputs(&mut self, visitor: &mut impl InputVisitor);
async fn evaluate(&mut self) -> Output;
}
pub trait InputVisitor {
fn visit<T>(&mut self, input: &mut Input<T>);
}
@ -390,7 +631,7 @@ mod tests {
#[test]
fn erase_node() {
let node = ErasedNode::new(ConstNode(1234 as i32));
let node = ErasedNode::<Synchronous>::new(ConstNode::new(1234 as i32));
let unwrapped = node.expect_type::<i32>();
assert_eq!(unwrapped.value_rc().borrow().unwrap(), 1234);
}
@ -512,7 +753,7 @@ mod tests {
#[test]
fn cant_freeze_no_output() {
let graph = Graph::<i32>::new();
let graph = Graph::<i32, Synchronous>::new();
match graph.freeze() {
Err(GraphFreezeError::NoOutput) => (),
Err(e) => assert!(false, "unexpected error {:?}", e),
@ -579,4 +820,27 @@ mod tests {
assert!(!frozen.is_output_valid());
assert_eq!(frozen.evaluate(), 2);
}
#[tokio::test]
async fn async_graph() {
let mut graph = Graph::new_async();
graph.set_output(ConstantRule(42));
let mut frozen = graph.freeze().unwrap();
assert_eq!(frozen.evaluate_async().await, 42);
}
#[tokio::test]
async fn async_rule() {
struct AsyncConst(i32);
impl AsyncRule<i32> for AsyncConst {
fn visit_inputs(&mut self, _visitor: &mut impl InputVisitor) {}
async fn evaluate(&mut self) -> i32 {
self.0
}
}
let mut graph = Graph::new_async();
graph.set_async_output(AsyncConst(42));
let mut frozen = graph.freeze().unwrap();
assert_eq!(frozen.evaluate_async().await, 42);
}
}