Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

725 lines
23 KiB
Python
Raw Normal View History

from fontTools.misc.roundTools import noRound, otRound
from fontTools.ttLib.tables import otTables as ot
from fontTools.varLib.models import supportScalar
2017-10-20 11:32:15 -04:00
from fontTools.varLib.builder import (
buildVarRegionList,
buildVarStore,
buildVarRegion,
buildVarData,
)
2018-02-19 19:06:43 -08:00
from functools import partial
from collections import defaultdict
from heapq import heappush, heappop
2017-10-20 11:32:15 -04:00
NO_VARIATION_INDEX = ot.NO_VARIATION_INDEX
ot.VarStore.NO_VARIATION_INDEX = NO_VARIATION_INDEX
2017-10-20 11:32:15 -04:00
def _getLocationKey(loc):
return tuple(sorted(loc.items(), key=lambda kv: kv[0]))
class OnlineVarStoreBuilder(object):
def __init__(self, axisTags):
self._axisTags = axisTags
self._regionMap = {}
self._regionList = buildVarRegionList([], axisTags)
self._store = buildVarStore(self._regionList, [])
self._data = None
self._model = None
self._supports = None
self._varDataIndices = {}
self._varDataCaches = {}
self._cache = {}
2022-12-13 11:26:36 +00:00
2017-10-20 11:32:15 -04:00
def setModel(self, model):
self.setSupports(model.supports)
2017-10-20 11:32:15 -04:00
self._model = model
2022-12-13 11:26:36 +00:00
def setSupports(self, supports):
self._model = None
self._supports = list(supports)
if not self._supports[0]:
del self._supports[0] # Drop base master support
self._cache = {}
self._data = None
2022-12-13 11:26:36 +00:00
def finish(self, optimize=True):
self._regionList.RegionCount = len(self._regionList.Region)
self._store.VarDataCount = len(self._store.VarData)
for data in self._store.VarData:
data.ItemCount = len(data.Item)
data.calculateNumShorts(optimize=optimize)
return self._store
2022-12-13 11:26:36 +00:00
def _add_VarData(self):
2017-10-20 11:32:15 -04:00
regionMap = self._regionMap
regionList = self._regionList
2022-12-13 11:26:36 +00:00
regions = self._supports
2017-10-20 11:32:15 -04:00
regionIndices = []
for region in regions:
key = _getLocationKey(region)
idx = regionMap.get(key)
if idx is None:
varRegion = buildVarRegion(region, self._axisTags)
idx = regionMap[key] = len(regionList.Region)
regionList.Region.append(varRegion)
regionIndices.append(idx)
2022-12-13 11:26:36 +00:00
# Check if we have one already...
key = tuple(regionIndices)
varDataIdx = self._varDataIndices.get(key)
if varDataIdx is not None:
self._outer = varDataIdx
self._data = self._store.VarData[varDataIdx]
self._cache = self._varDataCaches[key]
if len(self._data.Item) == 0xFFFF:
# This is full. Need new one.
varDataIdx = None
2022-12-13 11:26:36 +00:00
if varDataIdx is None:
self._data = buildVarData(regionIndices, [], optimize=False)
self._outer = len(self._store.VarData)
self._store.VarData.append(self._data)
self._varDataIndices[key] = self._outer
if key not in self._varDataCaches:
self._varDataCaches[key] = {}
self._cache = self._varDataCaches[key]
2022-12-13 11:26:36 +00:00
def storeMasters(self, master_values, *, round=round):
deltas = self._model.getDeltas(master_values, round=round)
base = deltas.pop(0)
return base, self.storeDeltas(deltas, round=noRound)
2022-12-13 11:26:36 +00:00
def storeDeltas(self, deltas, *, round=round):
deltas = [round(d) for d in deltas]
if len(deltas) == len(self._supports) + 1:
deltas = tuple(deltas[1:])
2022-12-13 11:26:36 +00:00
else:
assert len(deltas) == len(self._supports)
deltas = tuple(deltas)
2022-12-13 11:26:36 +00:00
varIdx = self._cache.get(deltas)
if varIdx is not None:
2018-11-08 14:39:15 -05:00
return varIdx
2022-12-13 11:26:36 +00:00
if not self._data:
self._add_VarData()
2017-10-20 11:32:15 -04:00
inner = len(self._data.Item)
if inner == 0xFFFF:
# Full array. Start new one.
self._add_VarData()
return self.storeDeltas(deltas)
self._data.addItem(deltas, round=noRound)
2022-12-13 11:26:36 +00:00
varIdx = (self._outer << 16) + inner
self._cache[deltas] = varIdx
return varIdx
2017-10-20 11:32:15 -04:00
def VarData_addItem(self, deltas, *, round=round):
deltas = [round(d) for d in deltas]
2022-12-13 11:26:36 +00:00
countUs = self.VarRegionCount
countThem = len(deltas)
if countUs + 1 == countThem:
deltas = tuple(deltas[1:])
else:
assert countUs == countThem, (countUs, countThem)
deltas = tuple(deltas)
self.Item.append(list(deltas))
self.ItemCount = len(self.Item)
2022-12-13 11:26:36 +00:00
2017-10-20 11:32:15 -04:00
ot.VarData.addItem = VarData_addItem
2022-12-13 11:26:36 +00:00
def VarRegion_get_support(self, fvar_axes):
return {
fvar_axes[i].axisTag: (reg.StartCoord, reg.PeakCoord, reg.EndCoord)
for i, reg in enumerate(self.VarRegionAxis)
if reg.PeakCoord != 0
}
2022-12-13 11:26:36 +00:00
ot.VarRegion.get_support = VarRegion_get_support
2022-12-13 11:26:36 +00:00
def VarStore___bool__(self):
return bool(self.VarData)
2022-12-13 11:26:36 +00:00
ot.VarStore.__bool__ = VarStore___bool__
class VarStoreInstancer(object):
def __init__(self, varstore, fvar_axes, location={}):
self.fvar_axes = fvar_axes
assert varstore is None or varstore.Format == 1
self._varData = varstore.VarData if varstore else []
self._regions = varstore.VarRegionList.Region if varstore else []
self.setLocation(location)
2022-12-13 11:26:36 +00:00
def setLocation(self, location):
self.location = dict(location)
self._clearCaches()
2022-12-13 11:26:36 +00:00
def _clearCaches(self):
self._scalars = {}
2022-12-13 11:26:36 +00:00
def _getScalar(self, regionIdx):
scalar = self._scalars.get(regionIdx)
if scalar is None:
support = self._regions[regionIdx].get_support(self.fvar_axes)
scalar = supportScalar(self.location, support)
self._scalars[regionIdx] = scalar
return scalar
2022-12-13 11:26:36 +00:00
@staticmethod
def interpolateFromDeltasAndScalars(deltas, scalars):
delta = 0.0
for d, s in zip(deltas, scalars):
if not s:
continue
delta += d * s
return delta
2022-12-13 11:26:36 +00:00
def __getitem__(self, varidx):
major, minor = varidx >> 16, varidx & 0xFFFF
if varidx == NO_VARIATION_INDEX:
return 0.0
varData = self._varData
scalars = [self._getScalar(ri) for ri in varData[major].VarRegionIndex]
deltas = varData[major].Item[minor]
return self.interpolateFromDeltasAndScalars(deltas, scalars)
2022-12-13 11:26:36 +00:00
def interpolateFromDeltas(self, varDataIndex, deltas):
varData = self._varData
scalars = [self._getScalar(ri) for ri in varData[varDataIndex].VarRegionIndex]
return self.interpolateFromDeltasAndScalars(deltas, scalars)
#
# Optimizations
#
# retainFirstMap - If true, major 0 mappings are retained. Deltas for unused indices are zeroed
# advIdxes - Set of major 0 indices for advance deltas to be listed first. Other major 0 indices follow.
2022-12-13 11:26:36 +00:00
def VarStore_subset_varidxes(
self, varIdxes, optimize=True, retainFirstMap=False, advIdxes=set()
):
# Sort out used varIdxes by major/minor.
used = {}
for varIdx in varIdxes:
if varIdx == NO_VARIATION_INDEX:
continue
major = varIdx >> 16
minor = varIdx & 0xFFFF
d = used.get(major)
if d is None:
d = used[major] = set()
d.add(minor)
del varIdxes
2022-12-13 11:26:36 +00:00
#
# Subset VarData
#
2022-12-13 11:26:36 +00:00
varData = self.VarData
newVarData = []
varDataMap = {NO_VARIATION_INDEX: NO_VARIATION_INDEX}
for major, data in enumerate(varData):
usedMinors = used.get(major)
if usedMinors is None:
continue
newMajor = len(newVarData)
newVarData.append(data)
2022-12-13 11:26:36 +00:00
items = data.Item
newItems = []
2019-04-23 09:28:03 -07:00
if major == 0 and retainFirstMap:
for minor in range(len(items)):
2019-04-24 09:26:17 -07:00
newItems.append(
items[minor] if minor in usedMinors else [0] * len(items[minor])
2022-12-13 11:26:36 +00:00
)
varDataMap[minor] = minor
else:
if major == 0:
minors = sorted(advIdxes) + sorted(usedMinors - advIdxes)
else:
minors = sorted(usedMinors)
for minor in minors:
newMinor = len(newItems)
newItems.append(items[minor])
varDataMap[(major << 16) + minor] = (newMajor << 16) + newMinor
2022-12-13 11:26:36 +00:00
data.Item = newItems
data.ItemCount = len(data.Item)
2022-12-13 11:26:36 +00:00
data.calculateNumShorts(optimize=optimize)
2022-12-13 11:26:36 +00:00
self.VarData = newVarData
self.VarDataCount = len(self.VarData)
2022-12-13 11:26:36 +00:00
self.prune_regions()
2022-12-13 11:26:36 +00:00
return varDataMap
2022-12-13 11:26:36 +00:00
ot.VarStore.subset_varidxes = VarStore_subset_varidxes
2022-12-13 11:26:36 +00:00
def VarStore_prune_regions(self):
"""Remove unused VarRegions."""
#
# Subset VarRegionList
#
2022-12-13 11:26:36 +00:00
# Collect.
usedRegions = set()
for data in self.VarData:
usedRegions.update(data.VarRegionIndex)
# Subset.
regionList = self.VarRegionList
regions = regionList.Region
newRegions = []
regionMap = {}
for i in sorted(usedRegions):
regionMap[i] = len(newRegions)
newRegions.append(regions[i])
regionList.Region = newRegions
regionList.RegionCount = len(regionList.Region)
# Map.
for data in self.VarData:
data.VarRegionIndex = [regionMap[i] for i in data.VarRegionIndex]
2022-12-13 11:26:36 +00:00
ot.VarStore.prune_regions = VarStore_prune_regions
2018-02-19 19:06:43 -08:00
2018-11-19 15:49:14 -05:00
def _visit(self, func):
"""Recurse down from self, if type of an object is ot.Device,
call func() on it. Works on otData-style classes."""
2018-02-19 19:06:43 -08:00
2018-11-19 15:49:14 -05:00
if type(self) == ot.Device:
2018-02-19 19:06:43 -08:00
func(self)
2018-11-19 16:15:45 -05:00
elif isinstance(self, list):
2018-02-19 19:06:43 -08:00
for that in self:
2018-11-19 15:49:14 -05:00
_visit(that, func)
2018-02-19 19:06:43 -08:00
2018-11-19 16:15:45 -05:00
elif hasattr(self, "getConverters") and not hasattr(self, "postRead"):
2018-02-19 19:06:43 -08:00
for conv in self.getConverters():
that = getattr(self, conv.name, None)
if that is not None:
2018-11-19 15:49:14 -05:00
_visit(that, func)
2022-12-13 11:26:36 +00:00
2018-11-19 16:15:45 -05:00
elif isinstance(self, ot.ValueRecord):
for that in self.__dict__.values():
2018-11-19 15:49:14 -05:00
_visit(that, func)
2018-02-19 19:06:43 -08:00
def _Device_recordVarIdx(self, s):
"""Add VarIdx in this Device table (if any) to the set s."""
if self.DeltaFormat == 0x8000:
s.add((self.StartSize << 16) + self.EndSize)
2022-12-13 11:26:36 +00:00
2018-02-19 19:06:43 -08:00
def Object_collect_device_varidxes(self, varidxes):
adder = partial(_Device_recordVarIdx, s=varidxes)
2018-11-19 15:49:14 -05:00
_visit(self, adder)
2022-12-13 11:26:36 +00:00
2018-02-19 19:06:43 -08:00
ot.GDEF.collect_device_varidxes = Object_collect_device_varidxes
ot.GPOS.collect_device_varidxes = Object_collect_device_varidxes
2022-12-13 11:26:36 +00:00
def _Device_mapVarIdx(self, mapping, done):
2018-11-19 15:49:14 -05:00
"""Map VarIdx in this Device table (if any) through mapping."""
if id(self) in done:
return
done.add(id(self))
2018-02-19 19:06:43 -08:00
if self.DeltaFormat == 0x8000:
varIdx = mapping[(self.StartSize << 16) + self.EndSize]
self.StartSize = varIdx >> 16
self.EndSize = varIdx & 0xFFFF
2022-12-13 11:26:36 +00:00
2018-02-19 19:06:43 -08:00
def Object_remap_device_varidxes(self, varidxes_map):
mapper = partial(_Device_mapVarIdx, mapping=varidxes_map, done=set())
2018-11-19 15:49:14 -05:00
_visit(self, mapper)
2022-12-13 11:26:36 +00:00
2018-02-19 19:06:43 -08:00
ot.GDEF.remap_device_varidxes = Object_remap_device_varidxes
ot.GPOS.remap_device_varidxes = Object_remap_device_varidxes
class _Encoding(object):
def __init__(self, chars):
self.chars = chars
self.width = self._popcount(chars)
2023-05-25 08:04:24 -06:00
self.columns = self._columns(chars)
self.overhead = self._characteristic_overhead(self.columns)
self.items = set()
2022-12-13 11:26:36 +00:00
def append(self, row):
self.items.add(row)
2022-12-13 11:26:36 +00:00
def extend(self, lst):
self.items.update(lst)
2022-12-13 11:26:36 +00:00
def get_room(self):
"""Maximum number of bytes that can be added to characteristic
while still being beneficial to merge it into another one."""
count = len(self.items)
return max(0, (self.overhead - 1) // count - self.width)
2022-12-13 11:26:36 +00:00
room = property(get_room)
2022-12-13 11:26:36 +00:00
def get_gain(self):
"""Maximum possible byte gain from merging this into another
characteristic."""
count = len(self.items)
2023-05-24 16:34:15 -06:00
return max(0, self.overhead - count)
2022-12-13 11:26:36 +00:00
gain = property(get_gain)
def gain_sort_key(self):
return self.gain, self.chars
2023-05-25 07:06:48 -06:00
def width_sort_key(self):
return self.width, self.chars
2022-12-13 11:26:36 +00:00
def __len__(self):
return len(self.items)
2022-12-13 11:26:36 +00:00
def can_encode(self, chars):
return not (chars & ~self.chars)
2022-12-13 11:26:36 +00:00
def __sub__(self, other):
return self._popcount(self.chars & ~other.chars)
2022-12-13 11:26:36 +00:00
@staticmethod
def _popcount(n):
# Apparently this is the fastest native way to do it...
# https://stackoverflow.com/a/9831671
return bin(n).count("1")
2022-12-13 11:26:36 +00:00
@staticmethod
2023-05-25 08:04:24 -06:00
def _characteristic_overhead(columns):
"""Returns overhead in bytes of encoding this characteristic
as a VarData."""
c = 4 + 6 # 4 bytes for LOffset, 6 bytes for VarData header
2023-05-25 08:04:24 -06:00
c += len(columns) * 2
return c
@staticmethod
def _columns(chars):
cols = set()
i = 0
while chars:
if chars & 0b1111:
2023-05-25 08:04:24 -06:00
cols.add(i)
chars >>= 4
2023-05-25 08:04:24 -06:00
i += 1
return cols
2022-12-13 11:26:36 +00:00
2023-05-25 07:11:01 -06:00
def gain_from_merging(self, other_encoding):
combined_chars = other_encoding.chars | self.chars
combined_width = _Encoding._popcount(combined_chars)
2023-05-25 08:04:24 -06:00
combined_columns = self.columns | other_encoding.columns
combined_overhead = _Encoding._characteristic_overhead(combined_columns)
2023-05-25 07:11:01 -06:00
combined_gain = (
+self.overhead
+ other_encoding.overhead
- combined_overhead
- (combined_width - self.width) * len(self)
- (combined_width - other_encoding.width) * len(other_encoding)
)
return combined_gain
2023-05-25 07:11:01 -06:00
class _EncodingDict(dict):
def __missing__(self, chars):
r = self[chars] = _Encoding(chars)
return r
2022-12-13 11:26:36 +00:00
def add_row(self, row):
chars = self._row_characteristics(row)
self[chars].append(row)
2022-12-13 11:26:36 +00:00
@staticmethod
def _row_characteristics(row):
"""Returns encoding characteristics for a row."""
longWords = False
2022-12-13 11:26:36 +00:00
chars = 0
i = 1
for v in row:
if v:
chars += i
if not (-128 <= v <= 127):
chars += i * 0b0010
if not (-32768 <= v <= 32767):
longWords = True
break
i <<= 4
2022-12-13 11:26:36 +00:00
if longWords:
# Redo; only allow 2byte/4byte encoding
chars = 0
i = 1
for v in row:
if v:
chars += i * 0b0011
if not (-32768 <= v <= 32767):
chars += i * 0b1100
i <<= 4
2022-12-13 11:26:36 +00:00
return chars
def VarStore_optimize(self, use_NO_VARIATION_INDEX=True, quantization=1):
"""Optimize storage. Returns mapping from old VarIdxes to new ones."""
2022-12-13 11:26:36 +00:00
# Overview:
#
# For each VarData row, we first extend it with zeroes to have
# one column per region in VarRegionList. We then group the
# rows into _Encoding objects, by their "characteristic" bitmap.
# The characteristic bitmap is a binary number representing how
# many bytes each column of the data takes up to encode. Each
# column is encoded in four bits. For example, if a column has
# only values in the range -128..127, it would only have a single
# bit set in the characteristic bitmap for that column. If it has
# values in the range -32768..32767, it would have two bits set.
# The number of ones in the characteristic bitmap is the "width"
# of the encoding.
#
# Each encoding as such has a number of "active" (ie. non-zero)
# columns. The overhead of encoding the characteristic bitmap
# is 10 bytes, plus 2 bytes per active column.
#
# When an encoding is merged into another one, if the characteristic
# of the old encoding is a subset of the new one, then the overhead
# of the old encoding is completely eliminated. However, each row
# now would require more bytes to encode, to the tune of one byte
# per characteristic bit that is active in the new encoding but not
# in the old one. The number of bits that can be added to an encoding
# while still beneficial to merge it into another encoding is called
# the "room" for that encoding.
#
# The "gain" of an encodings is the maximum number of bytes we can
# save by merging it into another encoding. The "gain" of merging
# two encodings is how many bytes we save by doing so.
#
2023-05-24 12:19:46 -06:00
# High-level algorithm:
#
# - Each encoding has a minimal way to encode it. However, because
# of the overhead of encoding the characteristic bitmap, it may
# be beneficial to merge two encodings together, if there is
# gain in doing so. As such, we need to search for the best
# such successive merges.
#
# Algorithm:
#
# - Put all encodings into a "todo" list.
#
# - Sort todo list by decreasing gain (for stability).
#
# - Make a priority-queue of the gain from combining each two
# encodings in the todo list. The priority queue is sorted by
# decreasing gain. Only positive gains are included.
#
# - While priority queue is not empty:
# - Pop the first item from the priority queue,
# - Merge the two encodings it represents,
# - Remove the two encodings from the todo queue,
# - Insert positive gains from combining the new encoding with
# all existing todo list items into the priority queue,
# - If a todo list item with the same characteristic bitmap as
# the new encoding exists, remove it from the todo list and
# merge it into the new encoding.
# - Insert the new encoding into the todo list,
#
# - Encode all remaining items in the todo list.
# TODO
# Check that no two VarRegions are the same; if they are, fold them.
2022-12-13 11:26:36 +00:00
n = len(self.VarRegionList.Region) # Number of columns
zeroes = [0] * n
2022-12-13 11:26:36 +00:00
front_mapping = {} # Map from old VarIdxes to full row tuples
2022-12-13 11:26:36 +00:00
encodings = _EncodingDict()
2022-12-13 11:26:36 +00:00
# Collect all items into a set of full rows (with lots of zeroes.)
for major, data in enumerate(self.VarData):
regionIndices = data.VarRegionIndex
2022-12-13 11:26:36 +00:00
for minor, item in enumerate(data.Item):
row = list(zeroes)
if quantization == 1:
for regionIdx, v in zip(regionIndices, item):
row[regionIdx] += v
else:
for regionIdx, v in zip(regionIndices, item):
2023-05-24 18:00:19 -06:00
row[regionIdx] += (
round(v / quantization) * quantization
2023-05-25 06:24:00 -06:00
) # TODO https://github.com/fonttools/fonttools/pull/3126#discussion_r1205439785
row = tuple(row)
2022-12-13 11:26:36 +00:00
if use_NO_VARIATION_INDEX and not any(row):
front_mapping[(major << 16) + minor] = None
continue
2022-12-13 11:26:36 +00:00
encodings.add_row(row)
front_mapping[(major << 16) + minor] = row
2022-12-13 11:26:36 +00:00
# Prepare for the main algorithm.
done_by_width = defaultdict(list)
todo = sorted(encodings.values(), key=_Encoding.gain_sort_key)
del encodings
2022-12-13 11:26:36 +00:00
# Repeatedly pick two best encodings to combine, and combine them.
heap = []
for i, other_encoding in enumerate(todo):
encoding = todo[i]
for j in range(i + 1, len(todo)):
other_encoding = todo[j]
2023-05-25 07:11:01 -06:00
combining_gain = encoding.gain_from_merging(other_encoding)
if combining_gain > 0:
heappush(heap, (-combining_gain, i, j))
2022-12-13 11:26:36 +00:00
while heap:
_, i, j = heappop(heap)
if todo[i] is None or todo[j] is None:
continue
2022-12-13 11:26:36 +00:00
encoding = todo[i]
other_encoding = todo[j]
todo[i] = None
todo[j] = None
# Combine the two encodings
combined_chars = other_encoding.chars | encoding.chars
combined_encoding = _Encoding(combined_chars)
combined_encoding.extend(encoding.items)
combined_encoding.extend(other_encoding.items)
# In the unlikely event that the same encoding exists already,
# combine it.
for k, enc in enumerate(todo):
if enc is not None and enc.chars == combined_chars:
combined_encoding.extend(enc.items)
todo[k] = None
break
for k, enc in enumerate(todo):
if enc is None:
continue
combining_gain = combined_encoding.gain_from_merging(enc)
if combining_gain > 0:
heappush(heap, (-combining_gain, k, len(todo)))
todo.append(combined_encoding)
for encoding in todo:
if encoding is None:
continue
done_by_width[encoding.width].append(encoding)
2022-12-13 11:26:36 +00:00
# Assemble final store.
back_mapping = {} # Mapping from full rows to new VarIdxes
encodings = sum(done_by_width.values(), [])
2023-05-25 07:06:48 -06:00
encodings.sort(key=_Encoding.width_sort_key)
self.VarData = []
for major, encoding in enumerate(encodings):
data = ot.VarData()
self.VarData.append(data)
data.VarRegionIndex = range(n)
data.VarRegionCount = len(data.VarRegionIndex)
data.Item = sorted(encoding.items)
for minor, item in enumerate(data.Item):
back_mapping[item] = (major << 16) + minor
2022-12-13 11:26:36 +00:00
# Compile final mapping.
varidx_map = {NO_VARIATION_INDEX: NO_VARIATION_INDEX}
for k, v in front_mapping.items():
varidx_map[k] = back_mapping[v] if v is not None else NO_VARIATION_INDEX
2022-12-13 11:26:36 +00:00
# Remove unused regions.
self.prune_regions()
2022-12-13 11:26:36 +00:00
# Recalculate things and go home.
self.VarRegionList.RegionCount = len(self.VarRegionList.Region)
self.VarDataCount = len(self.VarData)
for data in self.VarData:
data.ItemCount = len(data.Item)
data.optimize()
2022-12-13 11:26:36 +00:00
return varidx_map
2022-12-13 11:26:36 +00:00
ot.VarStore.optimize = VarStore_optimize
def main(args=None):
"""Optimize a font's GDEF variation store"""
from argparse import ArgumentParser
from fontTools import configLogger
from fontTools.ttLib import TTFont
from fontTools.ttLib.tables.otBase import OTTableWriter
parser = ArgumentParser(prog="varLib.varStore", description=main.__doc__)
2023-05-24 18:05:07 -06:00
parser.add_argument("--quantization", type=int, default=1)
parser.add_argument("fontfile")
parser.add_argument("outfile", nargs="?")
options = parser.parse_args(args)
# TODO: allow user to configure logging via command-line options
configLogger(level="INFO")
2023-05-24 18:05:07 -06:00
quantization = options.quantization
fontfile = options.fontfile
outfile = options.outfile
font = TTFont(fontfile)
gdef = font["GDEF"]
store = gdef.table.VarStore
writer = OTTableWriter()
store.compile(writer, font)
size = len(writer.getAllData())
print("Before: %7d bytes" % size)
2023-05-24 18:05:07 -06:00
varidx_map = store.optimize(quantization=quantization)
writer = OTTableWriter()
store.compile(writer, font)
size = len(writer.getAllData())
print("After: %7d bytes" % size)
if outfile is not None:
gdef.table.remap_device_varidxes(varidx_map)
if "GPOS" in font:
font["GPOS"].table.remap_device_varidxes(varidx_map)
font.save(outfile)
if __name__ == "__main__":
import sys
2022-12-13 11:26:36 +00:00
if len(sys.argv) > 1:
sys.exit(main())
import doctest
2022-12-13 11:26:36 +00:00
sys.exit(doctest.testmod().failed)